NATIONAL
MILITARY
COMMAND
SYSTEM
SUPPORT
CENTER

DEFENSE
COMMUNICATIONS
AGENCY

| THIS DOCUMENT HAS BEEN
*PROVED FOR PUBLIC

| ReLEASE; DISTRIBUTION

{ UNLIMITED,

COMPUTER SYSTEM MANUAL
CS5M PSM 9A.67

@) VOLUME II, PART B
o0 . 29 FEBRUARY 1972

THE NMCSSC
QUICK-REACTING
GENERAL WAR GAMING
SYSTEM
(QUICK)

PLAN GENERATION SUBSYSTEM

PROGRAMMING SPECIFICATIONS
MANUAL
DDC~
NATIONAL TECHNICAL U JUN- 1 1972 D] %
INFORMATION SEkviCE T
kg

THIS

DOCUMENT IS
UALITY AVAILABLE. T

BEST
- COPY

NISE

HD TO DTIC CONTAINED

THIS DOCUMENT CONTAINED
HAVE

BLANK PAGES THAT
BEEN DELETED

SIGNTFICANT NUMBER OF

WHICH DO NOT

Al B B o Yo ol
-QJEQ&EEE% _gxwf z{?e

REPRODUCED FROM
BEST AVAILABLE COPY

gt L e
L T

Scecurity Claasification

DOCUMENT CONTROL DATA.R&D

(Security classilicntion af 1ltle, body ol abstract and ijdexing annolation nusl be entered when tha uveenll report s closellted)
-n

——g

1. ORIGINAVING ACTiVITY (Cotporate autheo A0, AEPONRT SECURITY CLASSIFICATION

National Military Comuand zvdtom Support Conter (KMCSSQ)

Defense Communications Agency (DCA)

The Pentagon
Washinecton, DC 20301

"osmomen
L. choun

3. REPORT TiTLE
The NMCSSC Quick-Reoacting Gencral War Gaming System (QICK)
Programming Specifications Mwiual, Volume II, Plan Generation Subsystenm

4. OEACRIPTIVE NOTKS (Type of ropart and fic lunive datas)

& ProsecT No. NMCSSC Project 631 COMPUTER SYSTEM MANUAL CSM PSM 9A-67

N/A
5. AUTHOR(S) (KIraf name, middie Iniile], (&t ono) -
NMCSSC: Robert R, hardiman Lambda Corp: Paul D, Flanowgan
Yvonne Mapily Patricia M, Parish
_Donnld F, Webb Jack A. Sassceb
6. HEPOHKT DATE 78 TOVAL NO. OF FFAGHS W HO. OF REFS
29 February 1972 1133 4
42, CONTRACT OR GRANT NO, on, ORIGINATOR!'S REPOR MBE HIS
DCA 100~70-C- 0065 " NMCSSC ERORT nuMBRE

e, 0b. OTHER REPORYT NO(S) (Auy other numbircs the! may be sssignod
thia report)

d. None

10, VISTRIBUTION STATEMENT

This document is approved for public releasc; its distribution is unlimlted,

11, SUPPLEMENTARY NROTES 12, SPONSORING MILITARY ACTIVITY

National Military Command System Support
Center/Defense Communications Agency

The Pentapgon, Washingion, DC 20301

1D, ABBTRACY

This is one of three volumes deseribing computer programs of the QUICK-Reacting
General War Gaming System (QUICK), These volumes complement other NWCSSC Computer
System Manuals on QUICK by discussing the programs from a computer proy ranming poiut
of view, 'This voluma, in six parts, concentrates on the Plan Generation Subsystem of
QUICKJ Other volumes are available for the Input Subsystem and Simulation Subsysteia,
Collcctively, these volumes provide a good basis for maintenance activity ou the QUICK
Systen,

Based upon a suitable data base, and user control parameters, QUICK will generate
individual bomber and missile plans suitable for war gaming., The generated pluns are
of n form suitable for independent review and revision, Subsequently, exccution of
the planned events can be simulated, Various statisticnl summaries con be produccd
to reflect the results of the war game, A variety of force postures and strategien
csn be accommodated,

QUICE is documented extensively in a set of Conputer System Manuals (series 9-07)
published by the Natjonal Military Comnmand System Support Center (NMCSSC), Defense
Comuunications Agency (DCA), The Pentagon, Washington, DC 20301,

RO g Mow MUKLASKE DD rOOM 1478, § JAN 64, WHICH I8 ’ g
YA ONIOLETE FON ARMY UBK oL Vit

1118 Security Classification

P

NATIONAL MILITARY COMMAND SYSTEM SUPPORT CENTER

Computer System Manual Number CSM PSM 9A-67

29 February 1972

THE NMCSSC QUICK-REACTING GENERAL WAR

GAMING SYSTEM

(QUICK)

Programming Specifications Manual

Volume II - Plan Generation Subsystem

Part B (Chapters 6 through 11)

Submitted by:

Omsll 7 el

DONALD' F. WEBB
Major, USAF
Project Officer

Y

REVIEWED BY: APPROVED BY:
:;E?:!:‘;/, ' . 4 hllg;“‘—‘jlgkﬁﬁ¥HJeiL~b

R. E. HARSHBARGER BRUCE RR

Technical Director Colonel, USA

NMCSSC

Commander. NMCSSC

Copies of this document may be obtained from the Defense Documentation
Center, Cameron Station, Alexandria, Virginia 22314.

This document has been approved for public release and sale; distribution
unlimited.

ACKNOWLEDGMENT

This document was prepared under the direction of the Chief for Develop-
ment and Analysis, NMCSSC, in response to a requircment of the Studies,
Analysis and Gaming Agency (SAGA), Organization of the Joint Chicfs of
Staff. Technical support was provided by Lambda Corporation under
Contract Number DCA 100-70-C-0065.

TSN PRURPRI RS

ii

Chapter

Vi P N

6

CONTENTS

PART A
INTRODUCTION v v . « . .
PROGRAM PLANSET . . .,
PROGRAM PREPALOC . . .
PROGRAM AlOC
PROGRAM ALOCOUT

PART B
ACKNOWLEDGMENT
ABST RACT . L L]
PROGRAM FOOTPRNT . .

Purpose . . + + + + « + o &
Input Files « . « .
Output Files
Concept of Operation

Common Block Definition . . .

Program FOOTPRNT
Subroutine ADDRV . .
Subroutine ASSIGN . .

Subroutine BOOSTIN
Subroutine BOOSTOUT
Subroutine CHKSEQ

Function CRSTODWN .
Subroutine EVAL . . .
(Entry REVAL)
Function FLYDIST
Subroutine FOOTEST
Subroutine FUELSAVE .
Subroutine GOPRINT
Subroutine HITIT
(Entry MISSIT)

Subroutine IMPROVE
Subroutine INITASGN

Subroutine INPOT
(Entry OUTPOT)
Subroutine LOADREAD
(Entry PRNTLOAD)

iii

Page

10
94
182
371

ii
xv

453
453
454
454
455
461
477
493
498
500
506
508
510
512

517
519
530
532
545

548
554
556

559

a5

Chapter Page

Subroutine LREORDER . . . « ¢ ¢ v v ¢ ¢ & ¢ v o s o o » 560
Subroutine NEWCOOR e e s e e e e s e 562
Subroutine OPTBOOST . &+ v & v ¢ ¢ « o« ¢« o o 4 4« o o o 565
Subroutine PRINTSET . « v v v + ¢« ¢ o 4 o o v o o o & 574
Subroutine PRNTREQ . . . « + v « &« « v v o« v o o +» » + 576
Subroutine RDCARDF . . « ¢ v v « ¢ o &t & « s o o s o » 579
Subroutine REMOVE + ¢ ¢« v ¢« + 4 « o & . e 585
Subroutine SETDATA . . . + « + . « v v « & & & . e e 587
Subroutine TABLINPT e e e e s e 590
(Entry PRNTABLE) 1
Subroutine TEST + v v v « v ¢« v ¢ o o o « « « « 597 1
Subroutine TRANSFER . . . ¢« « v v + v v v o v o« « &+ o » 599

(Entry INITRANS)
Function UPTODOWN . . v v v v & v « ¢« v o o o o « o o » 601
Function VALF . . & . & v v 4 ¢« ¢ s o o« o o o o« o s o 603

Subroutine EVALOB

Subroutine FLTPLAN
(Entry FINFLT)

Subroutine FLTROUTE . . & v v & « ¢ « ¢ v v v 4 o o o & 709
(Entry FLTPASS)

Subroutine GENRAID

. 682
e e e e 687

7 PROGRAM POSTA'UC e e e e e 606]

PUPPOSE + « « v v v 4 4 e s e s e e e e s e s . 606

Input Files . . . e e e e e e e e e e e 606

Qutput File . . e e e e e e e e e e s 607

Concept of Operatlon e s e e e e e v e e e e 611

Raid Generation in POSTALOC « « « « + « 615

Setup for Sortie Optimization 619

Sortie Optimization . . e e v e e e e s e .. 620

Development of Missile Plans s e e e .. 621

Program Conventions for Indexing and Boo kkeeplng .« . 623

Common Block Definitien 626

External Common Blocks . . « . « & &« v & v & v ¢« « 626

Internal Common Blocks . . . B ¥

Subroutine CENTROID . . « + v v v v v ¢ v v v o o o + & 651
Subroutine CHGPLAN « « v ¢ v o v s 4 e o o o & 653
Subroutine CORRPARM e e e e e e e 657
Function DIFF ., c e v e e e e s .. 662
Subroutine DUMPSRT N et e e e 664
Subroutine EVALB e e e e e 666

' Subroutine EVALOA 679

* e s .

« o =

. e & .
-

e e e 715

Subroutine GETGROUP e e e e e 718
Subroutine GETSORT e e e . 720
Subroutine INITOPT . . .+ ¢« v v & « « o & e e e e e 725
Subroutine INPOTGT « ¢« ¢ « v v « + o« « & .. 728
Subroutine MISASGN . . . &+ v « ¢ o v ¢ ¢« o o v & « 731

iv

e i A

Chapter

8

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

NEXTFLT .
NOCORR . .
OPTRAID .
OUTPOTGT .
QUTSRT . .
POSIT . .
PRERAID

PRINTIT .

Function PRNTEF , . .

Subroutine
Subroutine
Subroutine
Subroutine

Purpose . .
Input Files
Output File
Concept of
Block 10:
Block 15
Block 20

Block 24:
Block 25:
Block 26:

Block 27:

Block 30:

GOLOW-
Block 31:
Block 40:
Block 50:
Block 60:
Block 80:

Last

Block 90:

Block 10

REFABORT .
SETFLAG .
SORTOPT .
TGTASGN .

PROGRAM PLNTPLAN

L N

S . 1] L] »

Operation
Program

: Control

» = e »

. .

Initialization
Loop .
¢ Determine Type of Plan
Initialize Plan .
Post Launch EBvent .
Post Refuel Events

.

.
.
.
.
.

»
.
.
.

.

. s s

.

! Initialize Plan with Respect to
GOLOW Range .

1 ...,

One . .

Common Block Definition .
External Common Blocks .
Internal Common Blocks .

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroulline

ADJUST . .
BOUNDARY .
CHKSUM . .
CLINDATA .
DECOYADD .
DISTIME

Post Corridor Events
Adjust /OUTSRT/ for ASM Events
Apply GOLOW-: Before First Target .
Post Depenetration Events . .
Read Next /OUTSRT/ Record, Convert

0

.

.

.

.

.

Process Precorrldor Legs and Apply

e & o o o

Process Final Plan and Write on EVENTAPE
0: Program Termination .

s s e o e

Page

737
740
743
746
748
751
753
756
758
760

766
775

779
779
779
781
793
798
798
799
799
799
799

800

802
804
804
807
807

807
808
809
853
853
853
871
884
895
897
898
908

s dre

T WL TRerae

Chapter

9

Subroutine FINDZONE
Subroutine FLYPOINT
(Entxy POSTFLY)
(Entry PREFLY1)
(Entry PREFLY2)
Subroutine INITANK
Subroutine LAUNCH .
Subroutine LNCHDATA
Subroutine PLANTANK
Subroutine PLANTMIS
Subroutine POST . .
(Entry POST4)
(Entry POSTS)
(Entry POST8)
(Entry POSTI1S5)
(Entry POST17)
Subroutine POSTLAUN
Subroutine PRNTAB .
Subroutine SNAPCON
Subroutine SNAPIT .
Subroutine SNAPOUT
Subroutine SWTCHALT

Subroutine TIMELNCH .

Subroutine VAM , .
Subroutine ZONECROS

PROGRAM EVALALOC .

Purpose . + . « . .
Input Files , . . .
OQutput File

Concept of Operation

Common Block Definition
External Common Blocks .
Internal Common Blocks

Subroutine BOMRPAKR
Function DIST . . .

Subroutine EVALPLAN .

Subroutine EVAL2 .
Subroutine MISLPAKR
Subroutine PACK . .
Subroutine SEARCH .
Subroutine SSSPCALC

(Entry INITPROB)
Subroutine TGTMODIF
Subroutine UNPACKER

Subroutine WPNMODIF .

.
.
.
.
.
.
.

e o & e e =

¢ e+ & a a =

vi

e o & e e e e =

¢« o e e

¢ e & s+ e e e = =

¢« * e o e »

« o * s =

s o » o e+ a

e+ e e
.

*» e @ s a2 e

« o » e =

e« o & a & & o 2 * e =

« o » e

s & & & a s s s

e e ® s+ e »

" s s e s e s s+ s ® = e =

Page

912
916

918
920
927
932
939
945

947
949
951
955
957
961
963
966
a78

982
982
982
982
983
986
986
987
399
1002
1004
1008
1014
1016
1021
1023

1026
1031
1034

e R AT T TR S

Chapter Page

10 PROGRAM INTRFACE « » 1036

o PUrpose o v v o v o v v e e e e e e e e e e e . 1036

S Input Files B 1 (%1
i Output Files . o v v v v v v v v v 0 0 0 b e e e 1036

Concept of Operation e o oe s e e e 1046

Common Block Definition « . .+ « « « v o 1047

Subroutine FINDTIME . . . « v v « ¢ + o « « « « + « + « 1056

Function IGETHOB e+ e s s e 4+ e s s« . . 1058

Function IPROB e e b 4 s s s e s s . . 1060

Function KWOBLANK + « « ¢ & v v v ¢ o « 4+ + .« « 1062

Function LATBT . . . ¢ v « ¢ v ¢« ¢« v « o« & e ¢ o« o« 1064

(Entry LONBT)
Function LATS « . « &« v v v v v ¢ v v v o o o o+ « . « 1067
{Entry LONS)

Function NOBLANK 1070

Function NOFFSYS . . . « « « & © e e e s e e e e o s 1072

- Function NOP . + o & ¢ ¢« ¢« & o o o o ¢ o e o e s s 1074
i Function NPLNETYP + « + v v o v ¢« v o o v v v« . . 1076
. Function NTIME . . &« & ¢ ¢ v v ¢« v o o o o o o o « « o+ 1077

Subroutine PRNTOFFS . ¢ v &« ¢ v v eie o o o o o« ¢+ « » 1079

Subroutine YLDFRAC + . . e e e e « +» .« o 1081

4 11 PROGRAM TABLE D o1 7: !
Purpose T 1)1

3 Input File T N 1.7
: ' OUEPUL FA1E & v 4w v 4 ¢« v v o v o o v v o o e v o v o . 1085
Concept of Operation e e w4 4 e e s e s o« e . 1085

Common Block Definitions. « . « 1086

Program TABLE . . . + + ¢ « « v 4 v « ¢ o o 4 s+ o &« » 1093

Subroutine HELP « « « « .« . P & 0[]

APPENDIXES
A. QUICK Attribute Names and Descriptions 1102
B. Entry Points for QUICK Utility Routines 1113

DISTRIBUTION . . v & ¢ v v o v v v v v v v e v o a s o e o o 0 o W 1117

DD Form 1473 . . ¢ ¢« ¢ v & ¢ o « o & o s o o o o o« 4 e + o« + « 1118

Program Listings
PLANSET ., , . .

S B 1)
PREPALOC

B 03X

vii

T el TR O R

Program Listing

ALOC .
ALOCOUT

Program Listings

FOOTPRNT .
POSTALOC .

Program Listings

PLNTPLAN
EVALALOC
INTRFACE

TABLE

.

a o + .

Part D

viii

Page

1415
1720

1853
2073

2347
2597
2701
2782

ine e e e o

{LLUSTRATIONS (PART B)

Number Page
81 Block Diagram of Program FOOTPRNT B 111
L2 Hierarchy of Major Subroutines of Program FOOTPRNT ... 462
83 Program FOOTPRNT (Geiteral Flow) . « « « « « v « v v o o - 484
84 Program FOOTPRNT (Detailed Flow) . . « « + « « v « « + « 485
85 Extra Re-entry Vehicle Allocation Example . . « o+« o 495
86 Subroutine ADDRV . v & v v v v ¢ v 0 0 i e e e e e 496
87 Subroutine ASSIGN '+ v v v ¢ v v v v v e b e e e e e 499
88 Subroutine BOOSTIN . e e e e e e e e e e e e e e 50z
89 Subroutine BOOSTOUT . C e e e e e e 0 e e e 507
90 Subroutine CHKSEQ Ve e e e e e e . . 509
91 Function CRSTODWN . ¢ v « v v v o v ¢ o & « 4 e 511
92 Subroutine BVAL . . « . v v 4 0 v v e e e e e e e e 514
93 Function FLYDIST . . . e e e e e e e e e e e e e e 51¢
94 Subroutine FOOTEST . . e e s e e s e e e . . 523
95 Subroutine FUELSAVE C e e e e e e e e s 531
96 Subroutine GOPRINT . . . et e e e e e e e e e 536
97 Subroutine HITIT . . .« e e e e e e e 54:.
98 Subroutine IMPROVE e e . e 550
99 Subroutine INITASGN + « & v v ¢ & v « o o s s + o o o o o 554

100 Subroutine INPOT . . & ¢ . v v ¢ v ¢ s o o o & ¢ o o a0 & » 558

101 Subroutine LREORDER . . e e e e e e e e e e e e 561

102 Calculation of Launch A21muth e e e e e e e e 563

103 Subroutine NEWCOOR + + v & v v v o v 4 o ¢ o o « ¢ o o & =« 564

104 Subroutine OPTBOOST . . . e et e e e e e e e e 569

105 Subroutine PRINTSET e h e e e e e s 575

106 Subroutine PRNTREQ . « « v & v v ¢« ¢ ¢« ¢« & v o« ¢« v « &« + « 578

107 Subroutine RDCARDF . ¢ v v ¢« v ¢ ¢ o o o « o s o « o o 582

108 Subroutine REMOVE . . e e e e e e e e e e e e 586

109 Subroutine SETDATA 589

110 Subroutine TABLINPT . . . « + « &« « « & .o e e e e s 505

111 Subroutine TEST . v ¢ v v ¢ ¢« o & o s o o ¢ o« o o o o o » 508

112 Subroutine TRANSFER . . © ¢« & ¢« v ¢« ¢ v o ¢« o s o o o & 600

113 Function UPTODOWN . . . e e e e e e e e e e e e e 602

114 Value Function Implemented inVALE o o oo .. 604

115 Function VALF ¢ v v v o v v v o o o o v o o o o o 605

116 POSTALOC Cal]ing SeqUeNCe . . . v v v e e e e e e .. 612

117 Program POSTALOC e e e e e e e . . 613

118 Illustrative Curvilinear Functlons . e bt e e e e e e 617

119 Configuration of Missiles in a Typ;cal Group Ve e e e .. 622

120 Subroutine CENTROID v ¢ 4 ¢ « v ¢ o o s o ¢ o o o 652

121 Subroutine CHGPLAN e e e e e e e . 655

122 Transformation of Coord*xates (TLAT TLONG) to x, 9N .. 660

123 Subroutine CORRPARM ¢ v ¢ ¢ v o o o o« o « s o 661

ix

Number

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
140
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165

166
167

Function DIFF . . .

Subroutine

Subroutine EVALB (Macro Flowchart) e e
Subroutine EVALB (Detailed Flowcnart) e

Subroutine
Subroutine

DUMPSRT .

EVALOA .
EVALOB .

.

.

.

* e 9

v

L)

L I ¢ & v s

. . . s

Illustration of Attrition Rates Assumed by FLTPLAN . .
FLTPLAN (Macro Flowchart) ,
FLTPLAN (Detailed FIOW) e e e e e e

Subroutine
Subroutine
Subroutine
Subroutina
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

FLTROUTE
GENRAID .
GETGROUP
GETSORT .
INITOPT .
INPOTGT

MISASGN

NOCORR

OPTRAID .
OUTPOTGT
OUTSRT .
POSIT . .
PRERAID .
PRINTIT .

Function PRNTF . .

Subroutine
Subroutine
Subroutine
Subroutine

REFABORT
SETFLAG .
SORTOPT .
TGTASGN .

NEXTFLT . .

¢ e

. 4

* e

.

" e s e e s

+ e & & =2 s = =

» = s e
-
-
-

* s & + = s

-
+ & e = « 2 e
+ = e « » e

-
« e o« »

« o = + ®
-
-
.

Program PLNTPLAN (Macro Flowchart) e e e e e e e
Path of Typical Romber Sortie
Acceptable Locations [ui Refuel Area,
Example of Precorridor Legs .
Il1lustration of ASM Event AdJustment e e e

Program PLNTPLAN

- Block

Program PLNTPLAN - Block
Program PLNTPLAN - Block

Program PLNTPLAN -

Block

Program PLNTPLAN - Block
Program PLNTPLAN - Block

Program PLNTPLAN -
Respect to GOLOW Range
Program PLNTPLAN - Block 30:

and Apply GOLOWL

Program PLNTPLAM - Block 31:
Program PLNTPLAN - Block 40:

Events

Block

10:
15:
20:
24
25:
26:
27:

.

. D Y S) LI}

Program Inltlallzatlon .
Control Loop
Determine Type of Plan .
Initialize Plan
Post Launch Event . .
Post Refuel Events .
Initialize Plan with

L T S I Y

Process Precorridor Legs

Pest Corridor Events .
Adjust /OUTSRT/ for ASM

L] L Y

e ® a2 =

Page

663
665
671
673
681
684
690
696
698
711
717
719
721
727
729
734
739
742
745
747
749
752
755
757
759
761
765
768
777
/94
797
801
803
806
810
812
813
814
815
816

821

822
825

829

.-

Number
168

le9
170

171

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

190

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

' !
Program PLNTPLAN - Block

Pirst Target
Program PLNTPLAN - Block
Program PLNTPLAN - Block

Convert Last One . ,
Program PLNTPLAN - Block

Write on EVENTAPE . .,
Program PLNTPLAN - Block
Increasel in Low-Altitude

Low-Altitude Adjustment
Subroutine ADJUST |} .

Example of a Zone Crossing . .
Example of Crossing for a Non- Convex
Example of Zone Boundary Dcscrlptlon

Subroutine BOUNDARY . .
Subroutine CHKSUM . .
Subroutine CLINDATA . .
Subroutine DECOYADD .

Distance Adjustments for Zone Crossings

Subroutine DISTIME . ., |
Subroutine FINDZONE . .
Subroutine FLYPOINT .
Subroutine INITANK .

50:
60:
80:
90:
100:
Flight
High-Altitude Adjustment . .

.

.

. o

Determination of ASM Aim Point .

LAUNCH Procedure Outline

.

Computation of Flight Path

Subroutine LAUNCH . .
Subroutine LNCHDATA . .
Subroutine PLANTANK . .
Subroutine PLANTMIS . .
Subroutine POST . .
Subroutine POSTLAUN
Subroutine PRNTAB .
Subroutine SNAPCON .
Subroutine SNAPIT
Subroutine SNAPOUT .
Subroutine SWTCHALT
Subroutine TIMELNCH ., .
Subroutine VAM
Subroutine ZONECROS
Program EVALALOC . .

e e » s » »

Location of Packed Values in

Subroutiné BOMRPAKR
Function DIST . . .
Subroutine EVALPLAN
Subroutine EVALZ . .

.

.
.

xi

.

.

»

.
.
.
.

LI

.

.

Terminations

e o s+ e = =

Post Depenetration
Read Next /OUTSRT/

Apply GOLOWZ Before

Process Final Plan

a s s s e .

v
.
.
.

Subroutine BOMRPAKR

[S

Events

Record,

and

- e .

Dage

833
838

839

849
852
875
876
876
877
885
885
886
883 \
896
897
901
909
910
913
917
919
923
924
925
926
928
935
941
946
948
950
953
956
959
962
965
970
979
984
1000
1001
1003
1006
1010

{
il 0 2
s ﬁﬂéﬁﬂﬂﬂﬁhﬁéﬁﬂﬁiié!d‘

Number ~ Page

o 212 Subroutine MISLPAKR . . & « & « v & o o 4 o 4 o o o+ 4 s 1015
: ' 213 Subroutine PACK . . & « v v v v o ¢ o o o e v e e e 1018
214 Subroutine SEARCH . . . & & « ¢ v ¢ v v ¢ 4 o s« o o o o« 1022
| 215 . Subroutine SSSPCALC N e e e e e e 1025
E 216 Subroutine TGTMODIF . . . & & ¢ ¢« & o & « ¢ o o & & o o 1028
: 217 Subroutine UNPACKER . . e e e e e e e e 1033
; 218 Subroutine WPNMODIF '+ v v v v v ¢ « o o « v o « o « v + « 1035
; _ 219 Program INTRFACE . .« .. . e e e e e e e e e 1048
] ' 220 Subroutine FINDTIME . « .. ¢ v ¢ s o o ¢ ot o o s s « o 1057
| 221 Function IGETHOB . . . « ¢ v v v & v 4 v v v « o o o o 4 1059
: 222 Function IPROB v v ¢ ¢ v*e v v v ¢ & o 4 o 4 « o o o & o & 1061
223 Function KNOBLANK 1063
; 224 Subroutine LATBT e e e e e e e e 1065
; 225 Function LATS ., . e et e e e e e e e e e e e 1068
226 Function NOBLANK . v & & & v v 4 v o & o ¢ ¢ o « o v « o« & 1071
227 Function NOFFSYS . . & ¢ ¢« ¢ v v v ¢ o o o o« o o o o o s 1073
228 Function NOP v ¢ v v v v 0 o v v b 0 e 0w s v a0 s 1075
229 Function NPLNETYP ., . . . Ve e e e e e e e e e e e e 1076
230 Function NTIME . . {. « & v v v ¢ ¢ v 0 0 0w s 0 0 s w0 1078
231 Subroutine PRNTOFFS . . . + v ¢ v v v v v b v v v v W 1080
232 Subroutine YLDFRAC . . &+ v & v o & 4 & ¢ « s o 2 o o &+ & & 1082
233 Target List (Program TABLE) . ., . . « .« +« « v o v o v « 1087
234 Vehicle Characteristics List (Program TABLE) 1088
235 Weapon Characteristics List (Program TABLE)o 1089
236 Missile Base List (Program TABLE) . . + + « v + o & » 4 1090
237 Bomber Base List (Program TABLE) . e b e e e e e e e 1092
238 Program TABLE v o ¢ v v ¢ v o o v v o o o o o+ » .~ 1095
) 239 Subroutine HELP SECECRCIEE . e e e e 1101
\ .
] i
|
3
xii
\

TABLES (PART B)

Format for MIRV Group Records on ALOCGRP File . . .
Program FOOTPRNT External Common Blocks
Program FOOTPRNT Internal Common Blocks
List of Initial Settings of Variables
Format for Assignment Data Scratch File ,
Data Blocks Used in Print Requests
Format for Print Requests e e e
Footprint Parameter Data Transm1551on . e
Format for Footprint Parameter Data Scratch File
STRKFILE Format (Missile Record) Written From
Array EVTDATA . . . e o
STRKFILE Format (Bomber Record) ertten From
Common QUTSRT ., . . . N
Program POSTALOC External Common Blocks .o

Format of Array EVTDATA in Common Block /3/ as Used

by Subroutine MISASGN (the Missile Record to be

Qutput to STRKFILE) . . . e e e e e
Program POSTALOC Internal Common Blocks e e e
List of Admissible Input Events by Type and

Information Relevant to Each . . ,

Bomber Events Recognized by PLNTPLAN N
Format of EVENTAPE Records (Bomber Plan Record) . .
Format of EVENTAPE Record (Missile Plan) . .

Format of EVENTAPE Record (Tanker Plan)

Format of EVENTAPE Record (Time Dependent DBL
Destruct Event) « « « v v v e 0 e o

Format of EVENTAPE Recovery Tables

Format of PLANTAPE Record (Bomber Plans)
Format of PLANTAPE Record (Missile Plans) .
Format of PLANTAPE Record (Tanker Plans)
Program PLNTPLAN External Common Blocks
Program PLNTPLAN Internal Common Blocks .
LAUNCH PRIORITY « « « « « « « .
Tanker Input Record « .« ¢« . « « .
Tanker Plan . . e
Arrays TDATA/ITDATA and BLOCK/LOCK Used in
PLANTMIS and TIMELNCH . .
Possible Values of a and b . . .
Program EVALALOC External Common Blocks . e
Program EVALALOC Internal Common Blocks
Format of Strike Card on STRIKE Tape
Format of Strike Card on STRKPEST Tape o
Format of "A" Card on Sortie Specifications Tape
(ABTAPE) . . v v v v v v v v v e

.

Page

456
463
466
475
481
534
577
588
588

608

609
627

636
638

780
782
784
785
786

787
787
788
790
792
854
860
900
934
934

940
952
989
994
1038
1040

1042

Number Page
59 Format of "B" Card on Sortie Specifications Tape -
(ABTAPE) . L] L] L] . L] L] L] L] L] . . . L] 1043
| 60 Program INTRFACE Common Blocks,, . . . 1052
F
xiv

__—wﬁ% <

ABSTRACT

The computervized Quick-Reacting Generval War Gaming System (QUICK) will
accept input data, automatically gencrate plobal strategic nuclear war
plans, simulate the planned events, and provide statistical output
stimmavies. QUICK has been programmed in FORTRAN for use on the NMUSSC
CDE 3800 computer systoem,

The QUICK Programming Specifications Manual (PSM) consists of three
volumes: Volume 1, Data Input Subsystem; Volume 11, Plan Generation
Subsystem: Volume 11, Simalation and Data OQutput Subsystems. The
Programming Specifications Manual complements the other QUICK Computer
System Minuals to facilitate maintenance off the war gaming system,

This volume, Volume 11, provides the programmer/analyst with a technical

description of the purpose, functions, general procodures, and programming
tochniques applicable to the programs of the Plan Generation subsystoem.,

This volume is in six parts: Parts A and B provide a desceription of

the programs which make up the Subsystoem: Parts ¢ through F contain
the associated program listings. Companion documents are:

1. GENERAL DESCRIPTTON
Computer System Manual CSM GD 9A-67
A nontechnical descreiption for senior management personnel

2. ANALYTICAL MANUAL
Computer System Manual CSM AM 9A-07 (three volumes)
Provides a description of the system methodology for the non-
programmer analysts

3. USER'S MANLIAL
Computer System Manual CSM UM V-7
Provides detailed instructions for applications of the system

4. OPERATOR'S MANUAL

Comput o System Manual CSM OM 9A-67
Pravides instructions amd procedures for the computer opervators

vV

LUl g i

CHAPTER 6
PROGRAM FOOTPRNT

PURPOSE

The purpose of program FOOTPRNT is to divide the sct of targets assigned
to a MIRV group into subsets, each of which is assigned to one booster
in the group. This division is constrained by the limitations of the
MIRV systems so that the acceptable booster assignments lie within a
geographic pattern known as a footprint., The program is divided into
two modules, the test module and the assignment module.

The test module receives as input a potential booster assignment. Using
footprint constraint parameters supplied by the user, this module
determines if the target set is a feasible footprint for the MIRV system,

The assignment module attempts to assign as many targets as possible to
a booster within booster loading constraints specified by the usezr,
Various loading options give the user flexibility in determining the type
of loading to be employed,

This program receives the TMPALOC file from program ALOCOUT and prepares
the ALOCGRP file. This latter file contains the weapon-target allocation
ordered by weapon groups. Program FOOTPRNT processes only those groups
with a MIRV capability., The target assignments to those groups are
divided into subassignments, each of which is a feasible MIRV booster
assignment,

There are two types of user input, algorithm control and footprint assign-
ment parameters. The first type controls the performance of the heuristic
algorithm which coniprises the assignment module, (These parameters are
discussed in Volume II of the User's Manual, Chapter 3, Plan Generation
Subsystem, Program FOOTPRNT, Input,) The footprint assignment parameters
define the nature of feasible footprints, These parameters define the
fuel used in delivering a series of re-entry vehicles and decoys in a
specific geographic pattern. The required user-input parameters are a set
of coefficients to equations used to model the physical MIRV systems,
(These equations are discussed in the Analytical Manual, Volume II, Plan
Generation Subsystem, Basic Sortie Generation - MIRV Missile Plans.)

In additicn to the parameters which define feasible footprints, the user
specifies one of three options for loading the boosters. The first option,
free loading, allows the algorithm to load the booster subject only to a
maximum load (number of re-entry vehicles) constraint. The second option
forces the algorithm to attempt to meet a minimum load constraint as well
as the maximum load constraint. The third option requires the algorithm
to meet both the minimum and maximum load constraints,

453

462 546 O - 72 -2

e kel

INPUT FILES

There are three basic sources of input to program FOOTPRNT: the TMPALOC
file, the BASFILE file, and the user-input parameter cards, The TMPALOC
file is produccd by program ALOCOUT. This file contains the assignment
of wcapons to targe*s, ordered by group and corridor. That is, all
targets assigned to weapons from the same group are placed together on
the TMPALOC file. Within each group, the targets assigned to the same
corridor are also placed together. Common /STRKSUM/ on this file
describes the ordering of corridors and strikes for each group. For
missile groups, only corridor O is used, so this latter ordering by
corridor has no effect. Program FOOTPRNT processes only those missile
groups with a MIRV capability.* Therefore, all information on the
TMPALOC file which does not deal with MIRV weapons is merely copied
verbatim to the ALOCGRP file, For MIRV weapons, FOOTPRNT reads from the
TMPALOC file the information contained in common blocks /STRKSUM/ and
/3/ as output by ALOCOUT. These data are transferred to common blocks
/STRKSUM/, /RAIDATA/, and /4/ in program FOOTPRNT. This information
defines the possible targets which can be assigned to the weapons in
each MIRV group. Program FOOTPRNT performs the assignment of targets to
individual boosters and outputs the information on the ALOCGRP file in a
form such that program POSTALOC can prepare the basic sorties for each
MIRV missile booster.

The data retrieved from the BASFILE include: plan size information
(/MASTER/), file information (/FILES/), weapon group information (from
blocks /PAYLOAD/, /WPNTYPE/, /WPNGRP/ on BASFILE), and excess weapon
assignment information (from /EXCESS/ on BASFILE).

The user-input parameters define the program control variables and the
footprint constraint definition variables. The former set of variables
governs the performance of the assignment module of the program. The
latter set of vuriables defines the footprint constraints to be applied
in the test module.

OUTPUT FILES

Program FOOTPRNT produces the ALOCGRP file. (This file is written using
the QUICK filehandler. The description of those routines describes the
format of the physical makeup of this file.) The file is output to the

CDC 814 disk unit for use by program POSTALOC. If there are no MIRV weapons

in the plan, program FOOTPRNT copies the TMPALOC file onto the ALOCGRP
file. If there are MIRV weapons in the plan, the information for those
groups without MIRV weapons is copied verbatim onto the ALOCGRP file,

* See program FOOTPRNT in Subroutines section of this chapter.

454

o i

Eor those weapon groups with a MIRV capability, the data on the TMPALOC
file are read into core. The program creates the individual booster
assignments and outputs the strike information onto the ALOCGRP file. For
MIRV groups, the data are organized as follows (see table 23). The index
number of each target that receives the first re-entry vehicle (RV) from

a booster is set negative. The strikes are ordered such that targets
which receive successive RVs from the same booster are listed in that
order. (See also following section: Concept of Operation.)

CONCEPT OF OPERATION

Program ALOCOUT prepares the TMPALOC file on which information concerning
target assignments is sorted by group. For those groups with a payload
containing multiple independently-targetable re-entry vehicles (MIRV),
program FOOTPRNT performs further processing. The inclusion of a MIRV
capability into the QUICK system is based upon the assumption that the
MIRV weapons can be allocated to targets without regard to the "footprint"
constraints, (These constraints define the geographic area into which the
ordered set of re-entry vehicles from a single booster must be targeted.)
This design approach considers that if a certain amount of extra or

excess strikes are included in the allocation, the footprint constraints
can be imposed later without the loss of payoff. Since imposition of the
constraints may show that a certain number of strikes contained in the
unconstrained allocation are not capable of inclusion in a feasible
footprint, the extra strikes are added so that the final assignment
contains the correct number of strikes,

This program prepares the ALOCGRP file for use by program POSTALOC. This
file is very similar to the TMPALOC file. For those weapon groups with
a MIRV capability, the data set on ALOCGRP differs from that on TMPALOC
in the following ways:

1. The "extra'" strikes have been removed

2. The index number (INDEXNO) of the target which receives the
first re-entry vehicle (RV) from each booster is set negative

3., The strikes are ordered such that:

a. Within each booster load (i.e., between minus signs) the

strikes are ordered in order of their delivery by the missile

b. The booster loads are ordered by decreasing value (as
defined by the sum of the relative damage values (RVAL)
for all targets assigned to the booster).

455

LY

e

IFormat for MIRV Group Records on ALOCGRP File

Table 23,
ASSOCTATED VARIABLE
COMMON OR ARRAY LENGTH
STRKSUM KGROUP 1
NTSTRK 1
NCORR 1
STRKSUM NSTRK 30
RAI gATA NT 1
JGROUP 1
JCORR 1
IND..X NT
TGTLAT NT
TGTLONG NT
RVAL NT
DLAT NT
J DLONG NT
RAIDATA LLFIX (NT/32)+1
4 DESIG NT
TASK NT
CNTRYLOC NT
4 FLAG NT

456

DESCRIPTION
Group number

Total number of strikes for
this group

Nunber of corridors for this
group { =1)

Number of strikes assigned
to cach corridor

Total number of targets
assigned to group

Group number

Corridor number (=0)
Index numbers of targets
(negative if first target
assigned to booster)
Target latitude (degrees)
Target longitude (degrees)
Relative value of strike
Offset latitude (degrees)
Offset longitude (degrees)
Fixed assignment indicator
Target designator code
Target task code

Target country location code

Target flag code

The only other data file required by program FOOTERNT is the BASFILE.
The program reads from this file:

1. Plan size information (/MASTER/)
2. Logical file units (/FILES/)

3. Wecapon group information (/WPNGRPX/ in FOOTPRNT; /PAYLOAD/,
/WPNTYPE/, /WPNGRP'/ on BASFILE)

4. Excess assignment information (/EXCESS/ on BASFILL).

The program operates on a group-by-group basis., fach group is considered
independently of all other groups. Hence, the discussion of all sub-
routines except the main program will consider only the operations required
for the current group, For non-MIRV weapon groups, the TMPALOC data arc
copied onto ALOCGRP. For MIRV groups, further processing is required.

The program consists of two modules, the assignment module and the testing
module. The assignment module determines the ordered subsct of the total
strike set that is to be assigned to cach booster. ‘The testing module
determines the feasibility of any single booster as<.gnment. The assignment
module calls the testing module many times during construction of the
subsets. Figurc 81 displays a functional diagram of this program.

The card input data for each module are discussed in detail in the
subroutine section (subroutine RDCARDF for assignment module, subroutine
TABLINPT for testing module). The assignment module data include control
information on which groups to process, the degree of effort expended in
forming footprints, the booster loading option, and other parameters which
govern the operation of the heuristic algorithm which subsets the target
list. The testing module data describe the footprint constraints. These
data contain information on fuel loads, maximum ranges, fuel consumption
rates, and distance ratios.

In essence, the operation of this program is a reordering of a list, The
input is an unordered list of strikes assigned to the group. The required
processing is to subset and reorder this list such that each sublist is a
feasible booster assignment. Since much of the processing involves lists
of various kinds, it is useful here to describe some of the basic lists
that are involved in processing (input, RATDATA, POTENT).

The first list is the input data, contained in common /RAIDATA/ and common
/4/. The data consist of several lists, each containing one element for
each target assigned to the group. The lists contain index number
(INDEXNO), target latitude (TCTLAT), target longitude (TGTLONG), reclative
damage value (RVAL), offset latitude (DLAT), offset longitude (DLONG),
fixed assignment indicator (LLFIX), target designator code (DESIG), target

457

]
Do For All ne
A Boosters - .ALOCGRP

o]

e
=]

Potential
Target Arrays

l

Test Module
1

A3
-
|
|
|
i
|
i
|
I
i Load
|
|
]
|
i
|
|
|
|
|
|
I
|
I
|
|

'l"" ________
Generate > Test :
Footprint |4 { Assignment :
\ '
s e oo e mm e e e o
Assign
- Booster
e e e e e - i

Fig. 81. Block Diagram of Program FOOTPRNT

458

Ve

L

o e o ieny ke PR | P i-J

task/subtask code {TASK), target country location code (CNTRYLOC), and
target flag code (FLAG). Most of these data are not needed after the early
calculations, so the data are written out onto a scratch file.

The geographic data are then converted to polar coordinates centered on the
group centroid with axis passing through the North Pole. The range and
launch azimuth from centrold to each target is computed and stored. The
data are then reordered according to increasing value of launch azimuth,
(The sequence array required for this ordering is also written on the
scratch tape.) The reordered targets are then arbitrarily assigned to
boosters in order of increasing azimuth, This initial assignment is made
without consideration of footprint feasibility. It merely provides a
starting point.

This processing has created the RAIDATA lists, contained in commons

/RAIDATA/ and /2/. (In the remainder of this chapter, the RAIDATA index
refers to the index of the target in the RAIDATA lists.) These lists
comprise, for cach target, the range (R) from the weapon group centroid,

the launch azimuth (THETA), the relative damage value (RVAL), and the various
pointers. The pointers for each target are defined as follows:

IFOR: A forward pointer, This is the RAIDATA index of the
target which will follow in the footprint. If this
target is not assigned to any footprint or if it is the
last target in the footprint, IFOR = -1.

IBACK: A backward pointer. This is the RAIDATA index of the
preceding target in the footprint. If this target is
not assigned to any footprint, IBACK = -1, If this
target is the first target in the footprint, then IBACK
is set to the negative of the RAIDATA index of the
target in the footprint with the greatest azimuth.

ISTATUS: A status indicator, defined as follows:

= -2 - Not assigned to any footprint and not in potential
target list (see below)

= -1 - In the '"lost' target list

0 - In potential target list
> 0 - Number of booster to which this target is assignad.

There are also two arrays in the RAIDATA lists which are indexed by tooster.
They are:

459

ik

"

IBOOST: The RAIDATA index of the first target assigned to this
booster

NTB: The number of targets currently assigned to this booster.

Although tne RAIDATA list provides the basic data base for footprint
construction, it would be inefficient to perform detailed calculations on
all the targets in the list for every booster in the group. A subset of
this 1list, named the potential target list, is created for each booster.
The assignment to a booster can be formed with only the targets present
in the potential target list for that booster. Detailed intertarget
calculations are performed only on targets in this list. This list is
contained in common blocks /POTENT/, /1/, and /3/. The index to targets
in this list is called the POTENT index.

Within the POTENT list there is a further division. The hit list (IHIT)
contains those targets which define the current footprint. The miss list
(MISS) contains all those targets in the potential list which are not on
the current hit list. The booster assignment is comprised of the last
hit list constructed by the footprint construction subroutines.

The major arrays which comprise the POTENT list are:
1POT: The RAIDATA index of the target.
INVERSE: A pointer to the hit and miss lists. If positive, it

is the target's position on the hit list. If negative,
it is the target's position on the miss list.

AGE: A factor related to the number of boosters processed
while the target has remained in the POTENT 1list.

VALFIRST: The worth of using this target for the first re-entry
vehicle delivered in a footprint.

JAFTER: The POTENT index of the target-which would immediatcly
precede this target if it were added to the footprint.

IHIT: The POTENT index of targets in the hit list,

TOFLY: The equivalent downrange distance between consecutive
rargets in the hit 1list.

COSTEFF: The worth of not deleting this target during the improve-
ment phase.

MISS: The POTENT index of targets in the miss list,

VAL: The worth of adding the target to the current footprint.

460

R e

NDEXVAL: A sequence array containing the order in which targets
in the miss list will be tested for inclusion in the
footprint.

IFREE: An array containing the indices of cells in the POTENT
list which have no targets assigned to them. NFREE is
the number of available cells. IFREE(NFREE) always
contains the index of the next available cell.

g LOST: The RAIDATA index of targets geographically clouse to
: the targets assigned to the current booster. These
: "lost" targets are awaiting entry into th¢ miss list.

* Common /3/ contains several arrays which store detailed data on the
potential targets,

The details of the processing of elements in all three of these lists is

contained in subsequent sections of this chapter. Figure 82 shows the
hierarchy and function of the major subroutines of this program.

COMMON BLOCK DEFINITION

This program references external common blocks /MASTER/ and /TAPES/ from
the BASFILE. In addition, certain information for common block /WPNGRPX/
is read from the BASFILE blocks /PAYLOAD/, /WPNGRP/, and /WPNTYPE/.

Tables 24 and 25 define the variables in each common block. Table 24 \
describes the external common blocks (those transferred on files to or
from other QUICK programs), and table 25 describes the internal common
blocks (those used internally to program FOOTPRNT)., Tabhle 26 lists
these variables and their initial value. Those variables marked with
an asterisk are given new values during executiui.

461

. Parameter Input
;. i Main Processor RDCARDF
[i FOOTPRNT P —— TABLINPT
I,

i

E ; ' .

v :

v Enitia) Data Setup File Input/Cutput
1S L b e]
" SETDATA bl o

) INLTASGN Filehandler

T

i BASFILE TMPALOC ALOCGRP

IFootpant Processing I -
——— I

; . \Potanthl Taxget Footprint Gencration Booster Assignmeht
g : |___Array Setup OPTBOOST
B g ' IMPROVE
v\ BOOSTIN ADDRV BOOSTOUT
T
F AN N
4 \ i \
..] .) N
' Licv Mpnipulation Evaluation Assignment Testing
4 ASSIGN TEST
REMOVE . EVAL/REVAL GHKSEQ
INPOT/QUTPOT i
HITIT/M?SSIT it
Value Cenexatioﬂ‘ Feotorint Constraints
I VALF FOOTEST .
J CRSTODWN
UPTODOWN
A
i
i 1
b
s
[
Fig, 82. Hierarchy of Major Subroutines of Program FOOTPRNT :

h
v

462 k !

' |
. . - ERSITR AR 4 L Lo Lo e g . e o B N - - _
P UL U0 SO U PRI RO S S SO o e s il

ST TR ey

Table 24, Progfam FOOTPRNT External Common Blocks

: , . (Sheet 1 of 3)
§ _ _ INPUT FROM BASFILE
; BLOCK VARIABLE OR ARRAY* DESCRIPTION
| MASTER THPATE Date of run initiation
é\ IDENTNO Run identification number
! I1SIDE ‘Attacking side
i NRTPT 7 Number of route points
NCORR Number of penetration corridors
3 NDPEN Number of depenetration corridors
NRECOVER Number of recovery bases
NREF b Number of refuel areas
NBNDRY ' Number of boundary points
® . Num@er of command and control
regions '
NTYPE Number of weapon types
NGROUP . Number of weapon groups
v NTOTBASE % Total number of bases
1 . NPAY LOAD Number of payload types
: NASMTYPE Number of ASM types
NWHDTYPE : Number of warhead types E
NTANKBAS Number of tanker bases
NCOMPLEX Number of complex targets
NCLASS \ Number of weapon classes
' (two) i
' NaLERT Nunber of alert conditions |
(two) ;
NTGTS \ Number of targets f
NCORTYPE Number of penetration corridor :
types

*Parenthetical values indicate array dimensions. All other elements are
single word variables. ' '

463

Table 24. (cont.)
(Sheet 2 of 3)

| BLOCK VARIABLE OR ARRAY DESCRIPTION

MASTER NCNTRY Number of country codes on

: (cont,) defending side

‘ FILES TGTFILE(2)* Target data file
BASFILE(2) Data base information file
MSLTIME (2) Fixed missile timing file

: ALOCTAR(2) Weapon allocation by targets file

- TMPALOC(2) Temporery allocation file

f ALOCGRP (2) Allocation by group file
STRKFIL(2) Strike file
EVENTAPE** Simulator events tape
PLANTAPE** Detailed plans tape

WPNGRPX*** NWPNS (200) Number of weapons in group
NVEHGRP (200) Number of vehicles (boosters) in
group

WLAT (200) Latitude of group centroid
WLONG(200) Longitude of group centroid
ITYPE (200) Weapon type
IPAY (200) Payload index
ICLASS(80) Class number
ISIMTYPE (80) Hollerith name of weapon system g
IMIRV(40) MIRV system identification number

* First word is logical unit number; second word is maximum file length
in words. These files are all on disk.

** Logical tape unit number. These files are on magnetic tape. 1
*** From blocks /WPNGRP/, /WPNTYPE/, and /PAYLOAD/ on BASFILE,

464

Table 24. (cont.)
(Shkeet 3 of 3)

G NS)

INPUT FROM TMPALOC AND OUTPUT ON ALOCGRP

i BLOCK VARIABLE OR ARRAY DESCRIPTION
] STRKSUM KGROUP Group number
5 NTSTRK Total number of strikes assigned
g NCORR Number of penetration corridors
¢ used
. NSTRK(30) Number of strikes assigned to cach
. penetration corridor
2 LSTRKSUM Length of STRKSUM record
] RAIDATA* NT Total number of strikes
% JGROUP Group number
? JCORR Penctration corridor
INDEX(1500) Target index number
; TGTLAT (1500) Target latitude
4 TGTLONG (1500) Target longitude
RVAL (1500) Relative value for target
DLAT (1500) DGZ offset latitude (degrecs)
1 DLONG (1500) DGZ offset longitude (degrees)
1 LRAID Length of /RAIDATA/ block to this
3 point
s NTMAX Maximum number of target assign-
1 ments for one group
é' LLFIX(1500) Fixed assignment indicator
3 (logical type variable)
- 4 DESIG(1500) Target designator code
TASK(1500) Target task/subtask code
CNTRYLOC(1500) Target country location code
FLAG(1500) Target flag code

* This block is redefined for internal use - sce internal common block
JRATDATA/ in table 25.

BLOCK.
RATDATA

CONTROL

Table 25.

VARIABLE OR ARRAY

NT
JGROUP
JCORR

INDEX* (1500)
R(1500)

THETA(1500)

RVAL(1500)
I[FOR(1500)

TBACK (1500)
LRATD
NTMAX
LLETX(1500)

NV
NARV

NEXTRA

PEXTRA**

NPASS

Program FOOTPRNT Internul Common Blocks i
(Sheet 1 of 9) :

DESCRIPTION
Total number of strikes . s

Group number
Penetration corridor
Target index number

Distance from group centroid to
DGZ (nautical miles)

Launch azimuth of weapon from
centroid to DGZ (radians)

Relative value for target

Forward pointer for booster
assignments

Backward pointer tor boostor
assignments

Length of /RATDATA/ Dlock to this
point

Maximum number of target assign-
ments for one group

Fixed assignment indicator
(logical type variable)

Number of boosters in group

Average number of targets per
booster in initial assignment
Number) boosters with initial
assipnments containing (NARV + 1)
re-entry vehicles

Fraction of total sitrikes that are
excess strikes added by PREPALOC

Processing pass number

* Array IDUM, used for input/out temporary storage ecquivialenced to
y I) y 8 q

this array,
** FErom common block /BEXCESS/ on BASFILE.

S

BLOCK

CONTROL
(cont.)

DSQUARE

EARTH

FOOTIO

Table 25. (cont,)
(Sheet 2 of 9)

VARIABLE OR ARRAY DESCRIPTION

FRACLOOK Fraction of next booster load
for look-ahead

MAXFOOT Input parameter governing degree
of effort expended in subroutine
OPTBOOST

DELAGE Multiplier for AGE in potential
target arrays

PURGE Fraction of targets in potentiel
target arrays removed in BOOSTIN

PN Weighting factor for worth function

EXTRAB* Number of extra booster loads
added in PREPALOC

NOK Actual number of correct strikes
to be assigned

IGSTART First group to process

IGEND Last group to process

cn2 Square of CROSSDWN

see common

uD2 Square of UPDOWN JRANGE/

DEL2 Square of DELMIN

Dz2 Square of D7 see common

VMIN =VALF (DELMIN/DZ,TNZ) § / VALPARM/

RADIUS Radius of earth (Nautical miles)

DEGTORAD Conversion factor ror degrees to
radius

PI Pi

PIDIV2 Pi/2

MAXRV Maximum number of re-entry vehicles :
allowed in one assignment X

ISYS System identification number

NTAR Number of re-entry vehicles

currently assigned

* From common block /EXCESS/ on BASFILE.

467

P ————

B s e s SERLIRT)

BLOCK

FOOTIO
(cont.)

FOOTSAVE

INDEX

Table 25. (cont.)
(Sheet 3 of 9)

VARYABLE OR ARRAY DESCRIPTION

RIN(20) Range to target (nautical miles)

THIN{(20) Azimuth to target (radius)

IFEAS Number of targets that can be
reached within fuel constraints

DELRSTRT Maximum additional flying distance
allowed if first target in footprint
is to be changed (nautical miles)

DELRAFT(20) Maximum additional flying distance
allowed if new target is to be
added after this target in
footprint (nautical miles)

FUELEFT Fuel left after completion of
weapon deliveries

IFOTSAVE (20) Potential target index of targets
in first footprint

NHITOLD Number of targets in first
footprint

VHITOLD Sum of RVALs for targets in first
footprint

IF25AVE (20) Potential target index of targets
in second footprint

N2SAVE Number of targets in second
footprint

JINR RAIDATA index of target to be
entered into potential target
arrays

JINP Potential target index of target
to be entered

JOUTR RAIDATA index of target to be
removed from potential target
arrays

JOUTP Potential target index of target
to be removed

JSAVE (20) Potential target index of targets

entered by look-ahead

e

BLOCK

. INDEX
(cont.)

LOADATA

PARAMETR

PERFORM

482:548 O -T2 - 3

Table 25.

(cont.)
(Sheet 4 of 9)

VARIABLE OR ARRAY

DESCRIPTION

NJSAVE

JSAVOPT
LOADOPT
NRVADD (1500)

NADDED
NTOADD
NONTAR(20)
NADDOLD
MAXSYS

THNAME (40)
MINLOAD (40)
MAXLOAD (40)
DSPACE (40)

THROWMAX (40)
MTYPE (40)
IDATA(40)
NASGN
VALASGN

TVAL
NOLD

469

Number of targets entered by look-
ahead

Look-ahead flag
Booster loading option

Number of extra re-entry vehicles
added to this target

Total number of extr: RVs added
in a pass

Number of RVs to be added to
current footprint

Total number of RVs on each target
in assignment

Number of extra RVs added in
first pass

Maximum number of systems allowed
in footprint parameter table

Hollerith name of MIRV system
Minimum number of RVs per booster
Maximum number of RVs per booster

Minimum spacing (nautical miles)
between consecutive DGZs in footprint

Maximum distance between consecutive
DGZs in footprint (nautical miles)

Footprint constraint functional
form designator

Index to footprint parameter data
set

Total number of targets assigned
to boosters in current pass

Sum of RVALs for all targets
assigned in current pass

Sum of RVALs for all targets

Number of targets assigned in
first pass

e T A8 B

Table 25. (cont.)
(Sheet 5 of 9)

BLOCK VARIABLE OR ARRAY DESCRIPTION
PERFORM VALOLD Sum of RVALs for targets assigned
(cont.) in first pass
POTENT MAXPOT Maximum number of potential targets
MAXHIT Maximum number of targets in hit
list
IPOT (50) RAIDATA index of potentia) targets
NHIT Number of targets in hit list
IHIT(20) Hit list - potential target index
TOFLY (20) Distance (nautical miles) between
successive targets in hit list
NMISS Number of targets in miss list
MISS (50) Miss list - potential target index
NFREE Number of available spaces in
potential arrays
IFREE(50) Potential target index of availabie
spaces
NLOST Number of "lost! targets
LOST (50) RAIDATA index of '"lost" targets
INVERSE (50) Index to position in hit or miss
list
AGE(50) Factor related to number of
boosters processed while target
remains in potential target arrays
RANGE CROSSDWN Ratio of downrange to crossrange
distance
UPDOWN Ratic of downrange to uprange
distance
DELMIN Minimum spacing between consecutive
DGZs in a footprint
DEFAULT Minimum spacing allowed for
computation
TSCRATCH ISCR Logical unit number for assignment

data scratch file

oA

BLOCK

TSCRATCH
{(cont.)

VALPARM

WPNTGT

e st 3 odan eme R n. L e

Table 25.

{cont.,)
(Sheet 6 of 9)

VARIABLE OR ARRAY

ITABL
Dz

TNZ
SLZ
IPOTGT

JAFT

JTGTD
NUMBOOST
VAL (50)
JAFTER(50)
VALFIRST(50)
COSTEFF (20)

D(50,50)
MAXBOOST

IBOOST (500)
NTB (500)

ISTATUS (1500)
NDEX(1500)

471

DESCRIPTION

Logical unit number for footprint
parumetcr data scratch file

Maximum distance between consecutive
DGZs in footprint

Intercept for value line (deter-
mined by PN in /CONTROL/)

Slope of value line

Potential target index of target
to be added or deleted from hit
list

Potential target index of target
after which new target is to be
added in hit 1list

RAIDATA index of target to be
removed from a booster assignment

Booster number currently being
processed

Worth of target if added to
footprint

Potential target index of target
preceding new target in footprint

Worth of making target first
target in footprint

Inverse of additional fuel needed
to reach this target .

Distance computation matrix

Maximum number of boosters allowed
in one group

RATDATA index of first target
assigned to booster

Number of targets assigned to
booster

Target processing status
Temporary index storage

1
4
!
1
1
i
!

Table 25, (cont.)
(Sheet 7 of 9)

BLOCK VARIABLE OR ARRAY
3 RP(50)

TP(50)

RVALP(50)

SINES (50)

COSINES (50)

AVRP

AVTHP

RHIT
THIT
SINAV
COSAV
SINHIT
COSINHIT
THOLD

DEBUG I10TA
ICAMFROM(20)

PRINT ICALL
IMUST
Filehandler*

FLAG NFLAG
IFLAG(100).
NC

DESCRIPTION

Range of target
Azimuth to target
Target relutive value
Sine of azimuth
Cosine of azimuth

Average range of all potential
targets

Average azimuth of all potential
targets

Nange to first target in footprint
Azimuth to first target in footprint
Sine of AVTHP

Cosine of AVTHP

Sine of THIT

Cosine of THIT

Azimuth used tc compute entries
in distance matrix

Index to last entryvy in ICAMFROM
array

Hollerith names of subroutine
calling sequence

Print request number
Error condition indicator

See section in this manual on
filehandler

Maximum number of print options
Active print indicator

Number of print requests

* ITP, TWORD, MyiDENT, NOPRINT, IFTPRNT, FILABEL, MYLABEL

472

FO S R 1 N O T

Table 25,

(cont.)
Sheet 8 of 9)

BLOCK VARIABLE OR ARRAY

DESCRIPTION

FLAG IPRNT (60)

(cont.) 1FG(60)
IFP(60)
IFB(60)
ILG(60)
ILP(60)
ILB(60)
MYPRT (60)

IDUMP

Print option number

First group to be printed
First pass to be printed
First booster to be printed
Last group to be printed
Last pass to be printed
Last booster to be printed

Mode by which print was requested
(DEFAULT, INPUT, or REMOVED)

Print number to abort run with
memory dump

The following blocks contain the parameters which define the footprint
constraints, The descriptions of subroutines TABLINPT and SETDATA contain

more detailed information,

FOOTDATA GAS(2)

(long-range RX(2,2)

system) RAXX(2,2)
TOSSC1(2,2,2)
T055C2(2,2,2)
TEONE (2,2)
TETWO(2,2)$
TDENOM(2)
RBASIC(2,2)
RADD(2,2)
EONE (2)
ETWO(Z)E
DENOM

473

Fuel available for footprinting
Basic range extension coefficient
Added range extension coefficient

Fuel consumption parameters

Fuel consumption exponents

Distance scaling factor
Basic maximum booster range
Added maximum booster range
Downrange-crossrange ratio
exponents

Distance scaling factor

Table 25, (cu
BLOCK VARIABLE OR ARRAY
FOOTDATA CONE(2,2)
(cont.) CTNO(2,2)
LLNGDAT
SHRTDAT ALPHAZ (16)
(:?gz:m§ange ALPHAL (16)
ALPHA2 (16)

% BETAZ (16)

1 BETAL (16)

4 BETA2 (16)

: MAXRBOST (16)

. GTWO

; GONE

; GZERO

s DONE

A DZEROi

] LSHTDAT

3 PENADD TOTFUEL

3 (additions

g for pene-

1 tration aids) SRFC1(2)

! SRFC2 (2)

i SRFEXP1(2)

i SRFEXPZ(Z)i

% SRFDEN

: LPENDAT

474

(Shee

)

DESCRIPTION

Downrange-crossrange ratio
coefficients

Length of this block

Fuel consumption parameters

Fuel load parameters

Maximum booster range

Downrange-crossrange ratio
parameters

Downrange-uprange ratio
parameters

Length of this block

Total fuel available for spacing,
release, and footprinting

Spacing and release fuel
coefficients

Spacing and release fucl
exponents

Distance scaling factor
Length of this block

T aE T,

oo

Tablo 26. List of Initial Settings of Variables**
(Sheet 1 of 2)

An asterisk flags variables whose values are changed during processing.

INITIAL
VARIABLE BLOCK VALUE REMARKS
AGE* POTENT 0.0 Length of time target has

remained in potential target list

AZDIFF .01 Used by subroutire REVAL to
determine necessity of recomputing
distance matrix

AZOLD* 1077 Used by subroutine FOOTEST to
determine necessity of recomputing
fuel consumption parameters

DEFAULT RANGE 1.0 Minimum spacing of DGZs required
for computation

DEGTORAD EARTH .0174532 Conversion factor-degrees to
radians

EPSILON* 107° Same use as AZOLD

IERR* 0 Error counter in stbroutine
FOOTEST

ILASTL* 0
Used by subroutine SETDATA to

*

TLASTE 0 determine if new footprint data

ILASTS* 0 are required

IMUST* PRINT 0 Error condition indicator

ISCR TSCRATCH 5 Scratch file logical unit
(assignment data)

ITABL TSCRATCH 6 Footprint data file logical unit

LLNGDAT FOOTDATA 57 Number of words in long-range
system data set

LPENDAT PENADD 67 Number of words in penetration
aids system data sct

LRAID RAIDATA 9003 Length cf /RAIDATA/ block

**This list does not include the default values of the user-input parameters
which are described in subroutine RDCARDF.

475

, Table 26, (cont,)
: (Sheet 2 of 2) |

\

; INITIAL :
? VARIABLE BLOCK . VALUE REMARKS
; LSHTDAT' SHRTDAT 117 Length of short-range system
data set
% LSTRKSUM STRKSUM 33 Length of /STRKSUM/ block
j- MAXBOOST 2 500 Maximum number of boosters pcrﬁ
é group
MAXHIT ' POTENT 20 Maximum number of RVs in one
; : footprint]
: MAXPOT POTENT 50 Maximum number of entries in
potential target list '
MAXRV FOOTIO .20 Maximum number of RVs in
I , footprint that can be tested \
MAXSYS PARAMETR 40 ' Maximum number of systems that '
can be considered in one irun
NFLAG FLAG 100 Maximum number of print options
NTMAX RAIDATA 1500 Maximum number of targets per
group
‘PDIFF .001 Used by subroutine FOOTEST to
: determine necessity of fuel
parameter recomputation \
PI EARTH 3.1415927
PIDIV2 EARTH ~1,5707963
RADIUS EARTH 3437.,746 Nautical miles ‘
THOLD* | 3 10+300 Azimuth used for distance matrix \
XOLD 107° Same as AZOLD f
\ :
!
i
\
;) :
|
476 i

Method
e,

I e T T at T T ERR R N L S A T

PROGRAM FOOTPRNT

PURPOSE : This is the main program. It acts as a control
\driver for the rest of the subroutines, It'is
‘the interface subroutine between this program
and the remainder of the QUICK system.

ENTRY POINTS: FOOTPRNT
\
FORMAL PARAMETERS: None i
COMMON BLOCKS: MASTER, FILES, TSCRTCH, WPNGRPX, STRKSUM, RAIDATA,

4, CONTROL, DSQUARE, EARTH, FOOTIQ, FOOTSAVE,
INDEX, LOADATA, PARAMETR, PERFORM, POTENT, RANGE,
VALPARM, WPNTGT, 1, 2, 3, DEBUG, PRINT, Filehandler
(ITP, MYIDENT, NOPRINT, IFTPRNT, TWORD, FILABEL,

\ MYLABEL) '

SUBROUTINES GCALLED: STORAGE, Filehandler (INITAPE, SETREAD, RDARRAY,

: | RDWORD, SETWRITE, WRARRAY, TERMTAPE), RDCARDF,
PRINTSET, SKIP, INITRANS, GOPRINT, TRANSFER, VALF,
SETDATA, NEWCOOR, INITASGN, BOOSTIN, OPTBOOST,
BOOSTOUI', ORDER, REMOVE, REORDER, LREORDER

CALLED BY: Operating System; this is a main program

i : -

The functioning of program FOOTPRNT can be divided into five parts; the
flowchart and the following description are similarly divided. The
parts are: the initialization of the program control variables, reading
the strike data and determlnlng the groups with.the MIRV capability,
setting the control data for each individual MIRV group, generating the
footprints for each booster in the group, and finally selecting, for-
matting, and writing the final plan. The majority ‘of the file reading
and wr1t1ng is accomplished in this program and the specific cases are
discussed in later paragraphs.

Parf 1 - The Initialization of Control Variables

The functioning of this part of the program is quite straightforward
logically. The program begins by calling subroutine INITAPE to initialize
the filehandler. Subroutine RDCARDF is then called to read and interpret
the user-input parameters. These parameters include the print requests,
program control variables, and footprint parameter data tables, The use

477

of these parameters is described under subroutine RDCARDF, Subroutine
PRINTSET is then called to initialize the print function flags. Then

the majority of the basic weapon group information is read from the
BASFILE. Commons /MASTER/ and /FILES/ are filled from the blocks of the
same name on the BASFILE. Common /WPNGRPX/ is filled from BASFILE blocks
/PAYLOAD/, /WPNGRP/, and /WPNTYPE/. Finally, the variables EXTRAB and
PEXTRA (in common /CONTROL/) are read from block /EXCESS/ on the BASFILE.
This part finishes by initializing the TMPALOC and ALOCGRP files and
requesting the preliminary prints.

Part II - Reading of the Strike Data and Determination of Groups with a
MIRV Capability

This section merely determines the data to be read from the TMPALOC file
and places the data in core for processing by the remainder of the program.
(For groups which do not have a MIRV capability, the data are copied from
the TMPALOC file onto the ALOCGRP file for use by program POSTALOC.)

This section begins by reading the data for common /STRKSUM/ from the
TMPALOC file. This record contains the group number, the number of
corridors for which strikes are planned, and the total number of strikes in
each corridor. If the value of the group number is equal to an end-of-
file marker (3HEOT) or if this value is greater than the user-input
parameter IGEND read by subroutine RDCARDF, then the program goes to a
termination block which finishes processing. (The termination block
merely sets an end-of-file marker on the ALOCGRP file, terminates all

the files, prints a termination message, and returns control to the
system monitor.) If the end of processing has not been reached, the
program determines the length of the fixed assignment indicator record.
This record is a logical array which has been constructed by progran
ALOCOUT to show which weapons in the group were set by the fixed assign-
ment capability of program ALOC. This indicator is used by later proces-
sors so that if various constraints require deletion of certain weapons,
those weapons whose assignments were fixed by the user in program ALOC
will not be among those deleted. Since the CDC 3800 computer system
packs logical arrays with more than one element per computer word,

the program must determine the length in words of this logical array
which must be read for further processing. The program then determines
i¢ the current group has a MIRV capability. The first test is on the
number of corridors in the strike data. If the number of corridors is
greater than one, then the group must have bomber weapons since a weapon
group with only missile weapons will send all its strikes to the same
corridor, labeled 0. If the current group is a bomber group with more
than one corridor for its strikes, the data are just copied out onto the
ALOCGRP file and control returns to the beginning of this part to read
the block of data for the next group. If only one corridor is assigned
for the strikes of the group, the program reads the first three words

of the /RAIDATA/ block. These words contain information on the number of

478

K

the corridor to which these strikes are to be assigned. If the corridor
number is not a 0, then again it is a bomber group and the data are merely
copied out onto the ALOCGRP file. If the corridor number is a 0, it is

a missile group and the program determines if the group number is greater
than the user-input parameter IGSTART read by subroutine RDCARDF, If

the group number is too low (that is, less than IGSTART), the data for
the missile group are copied out onto the ALOCGRP file. The next test
checks the payload table to see if the attribute IMIRV has a value
greater than zero for this group. If so, this missile group does have

a MIRV capability and is a candidate for further processing. The final
test that is made before going on to the next part is to check for
sufficient room in the arrays for the strikes assigned to this group.

If there is not enough room, an error message is printed, the data are
copied out onto the ALOCGRP file without further processing, and control
is returned to the beginning of this part. If there is sufficient room
to enable the later subroutines to process the data, control is trans-
ferred to Part III.

Part III - Setting Control Data for the Individual Group

Certain data must be preset before processing can begin on the MIRV group,
Processing in this part is relatively straightforward. First, the
Hollerith name of the weapon type is tested to see if there is agreement
between the name input with the footprint parameter constraints and the
name used by the QUICK system. If the names do not match, a warning
message is printed and processing continues as usual. The program then
sets up the minimum intertarget distance; that is, the minimum distance
in nautical miles between consecutive desired ground zeros for targets
assigned to the same booster. The program then sets up the value line
for function VALF.

A determination is now made of the actual number of re-entry vehicles
that are to be assigned to all the boosters in this group. Program
PREPALOC added some extra re-entry vehicles so that the allocator would
assign an excess of targets to the group. These extra re-entry vehicles
were added to simplify the processing in program FOOTPRNT. Program ALOC
does not consider footprint constraints when allocating weapons to targets.
It is possible, therefore, that some of the targets assigned by the
allocator cannot be put into a feasible footprint, Therefore, the
excess of weapons allows for these targets to be ignored when generating
the assignments for each booster without producing a total assignment
which underutilizes the weapons. Thus this part of the program must
determine the actual number of re-entry vehicles to be assigned. These
data are stored in the variable named NOK.

Since the majority of data in the /RAIDATA/ block will be reordered and
modified by later processing, it must be saved so that the correct data

479

C b I} i

3
1
\
i
¢
.
M
H

may be written out on the ALOCGRP, Therefore this part writes onto a
scratch file, ISCR, the data that were read from the TMPALOC file into
common /RAIDATA/. Table 27 displays the format of this scratch file,
This part then calls three subroutines, SETDATA, NEWCCQOR, and INITASGN.
These subroutines, respectively, set up the footprint testing algorithms
with the correct footprint parameters, convert the geographic information
from latitude and longitude to range and launch azimuth from the group
centroid, and perform the initial assignment of targets to the boosters.
The function of these subroutines is discussed later., Finally, this

part initializes all the arrays which make up potential target lists.

Part IV - Construction of Footprints

This part is divided into two passes. In the first pass the boosters

are considered individually in order of increasing launch azimuth. 1In

the second pass they are considered in order of decreasing azimuth.

This method is used so that any potential target will be investigated

by boosters whose initial assignment falls on either side of the launch
azimuth of the potential target. Because the majority of the processing
of footprints is done by subroutines BOOSTIN, OPTBOOST, and BOOSTOUT,

the sole function of this part of program FOOTPRNT is to call these
subroutines in their proper order. The only logically complicated section
of this part involves the deletion of excess weapons from the assignment.
As was mentioned earlier, it is possible that the program may be able to
form feasible footprints for a number of re-entry vehicles which is greater
than the actual number that the group has. This is caused by the excess
weapons which are added in program PREPALOC. Therefore, if the number
which has been assigned is greater than the number which the group really
has (i.e., NOK), then certain targets must be omitted from the assignments.
(This function is performed by the 3000 series statements in the program.)
The targets are ordered by increasing marginal damage, RVAL, as determined
by program ALOCOUT. Thus the first targets to be omitted from the
assignment are those with the least marginal damage (i.e., lowest RVAL).
The program considers the targets in value order until it reaches a

target which is assigned to the current set of footprints, has not been
allocated by the fixed assignment capability of program ALOC, and is
assigned to a booster with at least the minimum load (if the free-booster
loading option is not in effect). If a target meets all these conditions,
then it can be removed from the assignment. This process continues until
a sufficient number have been omitted so that the total number assigned

to all the boosters in the group does not exceed the actual number of
re-entry vehicles which are available to the group. Control then passes
to the fifth and final part of this program.

r Table 27. Format for Assignment Data Scratch File

% BLOCK LENGTH VARIABLE DESCRIPTION
L s 1 NT INDEX Target index number
g 2 NT TGTLAT Target latitude
3 NT TGTLONG Target longitude
: 4 NT RVAL Relative damage value
f
i 5 NT DLAT Offset latitude
i 6 NT DLONG Offset longitude
4
7 NT NDEX Sequence array for reordered
data
. o 8 NT IFOR Forward pointers for first
r: pass
: 9 NV 1BOOST First target for booster in
3 first pass
10 NV NTB Number of targets assigned
to booster in first pass
11 NT NRVADD Number of RVs added to

each target in first pass

NT = Number of targets input from TMPALOC

NV = Number of boosters in group

481

Part V - The Selection, Formatting, and Output of the Pinal Plan for the
Group

This part begins by retrieval of the group data which were put on the
assignment data scratch file while the footprints were being processed.
Then the program determines the better plan, the plan constructed in the
first pass or the plan constructed in the second pass. The method used to
select the better plan is to construct a weighted sum of the actual number
of targets assigned to the boosters and the number which were added to
meet the minimum load constraints in those cases where the free booster
loading option was not in effect. This weighted sum is equal to twice

the number of the actual targets assigned to the boosters plus the number
assigned to meet the minimum load constraints. The plan whose weighted
sum is greater is selected as the plan to be output for later programs.

If the weighted sums for the two passes are equal, then the plan with

the greater value assigned is selected, The value of a plan is the sum

of the marginal damage values, RVAL, of all the targets assigned to the
plan. If the first plan is selected then the program relrieves the
pointers to the lists which were output onto the scratch tape. This
destroys the pointers for the second plan.

The later programs in the Plan Generation subsystem expect the plan for
missile groups to be in order of decreasing value of the booster
assignments. That is, if we define the booster value to be the sum of the
RVAL values of all the targets assigned to the booster, then the later
processors expect these booster values to be decreasing as the lists

are output onto the tape. This part of program FOOTPRNT, therefore,
computes the value of the strikes assigned to each booster. It then
reorders the total target list so that the strikes are in order not only
by booster value but by order of delivery by the MIRV equipment. This
function is done by assigning to every strike a "sequence' index which is
defined as follows:

SI = (1000*NBBV)+ND
where SI = sequencing index
ND = order of delivery from booster
(1 = first, 2 = second, etc,)
NBBV = order of booster value

(1 = most valuable booster, 2 = second most valuable, etc.)

Thus once every strike has been assigned a sequencing index, a simple
operation to order the strikes by the sequencing index will put them into
correct sequence, The program then negates the index numbers for those
strikes which are the first strike to be delivered from each booster and
prepares the plan for output onto the ALOCGRP file for program POSTALOC.

482

o G

d‘*‘%

n

The most complicated section of this part involves the addition of the
extra re-entry vehicles which were placed on the booster in order to
meet the minimum load constraints. The method to make these additions
is as follows. When a target has been reached which has an extra number
of RVs allocated to it, then the data (such as the target latitude,
longitude, and relative value) for this target are saved. The program
then looks through the RAIDATA list to find a target which has not been
assigned to any booster. This position in the list is then used for a
re-entry vehicle which has been added. The data which had been in

this list previously for the strikes are removed and the saved data for
the target to which the re-entry vehicles have been added are placed in
this position in the list. The sequencing index is also placed in an

array so that the added re-entry vehicles will follow the first re-entry
vehicle allocated to the target.

Finally, the data are written onto the ALOCGRP file and control returns

to the beginning of Part Il where the strike data for the next group are
read.

Program FOOTPRNT is illustrated in figures 83 and 84.

483

By SE—

Assignment
SCRATCH 5

~4) Initialize

Part I

Program
Control
Variables

'

Part II
Read Strike

Find MIRV jeg
Groups

MIRV
Groups
Only

Part 1II

Set Group
Control
Data

!

Part 1V

Construct
Footprints

i g

Data And [~——~=~

Part V 4

Select And [/
Output Final}
Plan

ALOCGRP
2

Fig. 83. Program FOOTPRNT (General Flow)

484

. START
) :]

; Call INITAPE
z To Initialize
. Filehandler

'

Call RDCARDF
[To Read User-Input
Parameter Cards

v

: Call PRINTSET To
; Initialize Print
2 Request Flags

(. Call SETREAD

To Initialize
? BASFILE

Correct
BASFILE
Format?

Read to File
- /MASTER/, /FILES/,
/WPNGRPX/ And
v EXTRAB and PEXTRA
4 Call TERMTAPE

To Terminate
BASFILE

'

Call SETREAD
4 To Initialize
o TMPALOC To Kkead

Call SETWRITE Regugst
To Initialize ==t In*q;al
ALOCGRP To Write Prints

Print
Error
iessage

Fig. 84. Program FOOTPRNT (Detailed Flow)
Part I: Control Variable Initiation

485

482546 O - 72 - §

T e Tt e o

50
Read/STRKSIM/

Record

/' Yes
/
/
/
/

// Determine Length

/ Of Fixed

/ Assignment
/ Indicator Record

90

Copy Out /STRKSUM/
Call TRANSFER To
Copy Information

TMPALOC 3

\\ One Crridor? From TMPALOC
~ N To Ta ALOCGRP
~N]
~
~ Read First Thrase
Wards OF ——
1o i
Zero Copy Out /STRKSIM/ I
Corridor? And First Three Words
Of /RATDATA/; Call
TRANSFER For Tranafer,
Yo Of Remainder Of Data
S J
130 120 Y e —]

Copy Out /STRKSUM/
And TEANSFER All
Remaining Data

|

Should
Processing
Begin?

Print Error
Message

MIRV ?

Fig. 84. (cont.)

Part I1: Read Strike Data and Find MIRV Groups

e =
A et et et b S ot o e

Print
Warning
VMassagu

Do Hollerith
Names Match?

172

Set Up Minimum
Intertarget Distance

-

Too Many
Vehicles?

‘I!"F_Jo

No

180 i

Set Up Value Line
For VALF; Determine
Actual Number Of
RVs Available (NOX)

Read Remainder of
——— -/RAIDATA/ Block
and /4/ Block

hhe&n e e
/RAIDATA/ Block

Assignment
SCRATCH 5

”
220 Retrieve Footprint rad
Data (SETDATA), 4
g;:a:t:li Transform Coordinates -
oo t“ t—| (NEWCOOR) ,
A:;ges Muake Initial
Y Assignment (INITASGN)

Fig. 84. (cont.)
Part III: Set Group Control Data

487

NPASS = 1
Set Prints (PRINTSET),
Enter Targets Into
Do For All Boosters 0 Potential Avrays
In Order Of e = (BOOSTIN),
Increasing 1999 Generate Footprints
Azimuth B BREE— (OPTBOOST) ,
Make Assignments,
Done (BOOSTOUT)
A
Determine Order
Of Targets
By Value

Set First Pass
Return Switch = 2000

2000

2000
_____ Save First Pass
Plan On Tape

Do For All Boosters
In Order Of 1 Set Up Footprints
Decreasing “W‘ As In Pass One

Azimuth

Is there An
Excess
Assignment?

3010 3500 y

, Remove Save Pointers | 4000

- Necessary Targets In Second Plan | Y
| (See next sheet)]

Fig. 84. (cont.)
Part IV: Construct Footprints

488

Fig. 84.

[Betermine Number

To Be Omitted

y

Set Index Of A
Target To Be
Investigpted To Zero

f > Investigation [ndex

3020 &

Increment Target

Print Error
Messages

Find RAIDATA
Index

3030 l

1s Target Assigned
Unfixed, And On
A Booster With
Adequate Load?

3035 } Yes

Increment
Nunber Omitted

Y

Remove Target
From Assignment

x

Are Sufficient
Number
Omitted?

(cont.)
Part V: Excess Target Removal (Detail)

489

’ :
f- |

; - ; 4000

- 4000 : :

: \ - Retrieve Group -
. ; Data From Tape y '
5 : Py And Reorder It .

Assignment | _ -~ l
1

SCRATCH 5

'Select Better
Plan By Number
Assigned And
Value Assigned

Retrieve
Pointers
For '
Assignment

Which
Plan Is
Better?

Second Pass

E ‘ v 4030

Detarmine Order Of

; : L ; Boosters According
| To Sum of Value

v 0f Assigned Targets

f ' ‘ 4080,4090 l

\ ' Order Strikes Within \ .
4080 Each Booster | !
' Assignment \ . \
\
4071

Add Extra.RVs Needed .
To Meet MINLOAD \)
(See next sheet) ' |

. 4110
: | [PEORDER, RAIDATA/DATA ||

5000 ‘
Write Out Prdcess
Data On ALOCGRP

Fig. 84. {(cont.) :
\ Part VI: Select and Output Final Plan

1490

R R

Fig. 84,

e et e s

~——1 Targets To ‘——-——-jl

Set Number Nceded
To Add (NTOADD)
And RAIDATA Index
Of Basic Target

y
Do For All

4074

Be_Added

Do
. Do For All I

Targets In
/RAIDATA/ Not Yetl

Searched

4072

Do;

Is
Target
Unassigned?

4073y Yes

Set Index For
Last Target Searched

T

Replace This Target's
Data With That Of
The Basic Target

(cont.)
Part VII: Detail for Adding RVs Required
to Meet MINLOAD Constraint

491

Set End-
Of-File
Marker

....... ALOCGRP
2

Terminate
All
Files

Print
Termination
Message

Fig. 84. (cont.)

Part VIII: Termination Block

492

SUBROUTINE ADDRY

PURPOSE: This routine determines the placement of
re-entry vehicles added to a booster assignment
solely to meet a minimum load constraint,

ENTRY POINTS: ADDRV

FORMAL PARAMETERS ; None

COMMON BLOCKS: 5, DEBUG, FOOTIO, LOADATA, PARAMETR, POTENT,
PRINT

SUBROUTINES CALLED: FOOTEST, GOPRINT

CALLED BY: OPTBOOST

If the free booster loading option is not exercised (i.e., LOADOPT#Q),
then the program may require that some target points in a footprint
receive more then one re-entry vehicle (RV). If so, this subroutine is
called to assign the extra RVs to the targets already assigned to the
booster,

This subroutine computes the number of RVs to be added, NTOADD. It

then sets up an array, NONTAR, which specifies the number of re-entry
vehicles assigned to each target in the current hit list. The testing
arrays in common /FOOTIOQ/ are filled by referencing both the hit list and
the NONTAR array. In this fashion, the feasibility of adding the extra
Rvs is tested.

The subroutine begins by adding NTOADD re-entry vehicles to the first
target in the footprint. If this allocation is not feasible, ADDRV
decrements the number of RVs added to the first target until it reaches
a feasible allocation, There is no further processing for this alloca-
tion since, if a re-entry vehicle cannot be added to the first target of
a footprint, it cannot be added to any later target.

If the total number of added re-entry vehicles could be added to the first
target, the subroutine searches for an alternative allocation with less
variance in the number of RVs allocated to each target pount. (The
optimal allocation would have the same number of vehicles assigned to each

493

target in the footprint.) The alternative allocations are constructed by
examining the number of vehicles on each target, The targets are
examined in order of delivery of their RVs by the final stage of the
booster. At the first target where this number decreases (a decreasing
step), a vehicle is removed and placed at the last target which has a
number allocated less than the preceding target. Figure 85 demonstrates
the construction of a series of alternative allocations. If at any

time an alternative allocation is infeasible, the subroutine reduces

the number of targets to be investigated for addition of RVs and con-
tinues processing,

Subroutine ADDRV is illustrated in figure 86.

494

STEP 1

Number
on Target
(NONTAR)

N A O

g
2 3
Target

STEP 2

NONTAR

S N A O~ O

Q STEP 3

NONTAR

o N D O

Target

Fig. 85. Extra Re-entry Vehicle Allocation Example

495

Footprint?

Are There Any‘—w_ﬂ9
Targets In

/

Initialize
Variabtes

&

800

Do More RVs
Need To
e Added?

10 :
20

‘ Yes

Mo Move Data
To RAIDATA
List

{

50

Extras To First

. Add A1l Required
Target In footprint

Set ICANT Flag
And Decrement
Number To Be
Added By One

60 yw Yes

Set Up NONTAR Array
Which Shows Allocation
0f Extra RVs To Targets

Were.All
Required Rvs
Added?

Yes

Are There No
Any Alternative
Allocations?

Yes

90

Fig. 86. Subroutine ADDRV

(Sheet 1 of 2)

496

1000

= — e i1 g TR T T T T
T .r e = e B y n P W T T I REENAEC N Puted 110 . T TR
r’-!..n—v—g. a Y o R 1 et i Ll ad v R A L e 3

90

Set Last Target
¢ To Be Checked

100 ‘
Do For All

H Done
. 110 Targets To @
i Be Checked

None

Save Index
And Modify
Array

Y

Do (In Reverse

130 Order) For All Done Restore >
Targets To . > Array

Be Checked

Allocation?

Set Up No
Test Arrays 200

Reduce Number
Of Targets To
Feasible? No Be Checked

Checking

Yes Any Targets?

Fig. 86. (cont.)
(Sheet 2 of 2)

497 '\;

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE ASSIGN
This routine assigns the entire hit list to the
current booster, NUMBOOST.
ASSIGN
None

RAIDATA, 4, PERFORM, POTENT, WPNTGT, 2, DEBUG,
PRINT

GOPRINT

BOOSTOUT

This routine retrieves the RAIDATA index of each target in the hit list
and modifies the pointer in the IFOR, IBACK, 1BOOST, and NTB arrays in

the RAIDATA lists.

It also increments the total number of targets

assigned, NASGN, and the total value assigned, VALASGN.

Subroutine ASSIGN is illustrated in figure 87.

498

AR L L e el i Lk i Al G A

START

<<:Are There Targets ‘\\No

In The Hit List? J/’

Yes
100

Set All Pointers
For First Target
In Hit List

v

900 i

Set Backward

110 Do For All Remaining Done | pointer; Increment

‘[m

Set All Pointers
For Targets

Fig. 87.

* Targets In Hit List » Number Of

Targets Assigned

f—ete] Optional

Request

Prints

Subrout.ine ASSIGN

RETURN

SUBROUTINE BOOSTIN

: PURPOSE This routine determines the set of potential targets
: for each booster and computes detailed intertarget
y. parameters for all targets in the potential target

; list,

é' ENTRY POINTS: BOOSTIN

] FORMAL PARAMETERS: None

i COMMON_BLOCKS: RAIDATA, 4, CONTROL, DSQUARE, FOOTIO, INDEX,

PARAMETR, POTENT, RANGE, VALPARM, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, ORDER, OQUTPOT, INPOT, CRSTODWN, UPTODOWN,
VALF

CALLED BY: FOOTPRNT

C s

Method
3
This routine is called once each pass for each booster., Its purpose is .
to set up the potential target arrays for the booster. Its functions :
: are:
9 1. Remove targets from the potential target arrays
E 2. Search for unassigned targets in the neighboring geographic area
- and place them in potential target arrays
3. Enter targets currently assigned to the booster into the
potential target arrays
i 4. Compute intertarget distance matrix
‘ P
5. Determine worth of maintaining each target in the array for the

next booster processed

6. Compute the worth of starting the footprint with each target.

ek b i 4T

Processing begins with the search for ''lost'" targets. These are targets
which are currently unassigned to a booster and not in the potential :
target arrays. This search is done only on the second pass since the :

500

2\ - et i th. = UV

initial assignment generated by subroutine INITASGN contains every

target. The geographic area to he searched is determined by targets
currently assigned to the booster and also the targets assigned to the
next bvoster to be processed., The backward pointer (IBACK) of the first
target in each footprint is set to the RAIDATA index of the target with
the largest launch azimuth in the footprint. Thns BOOSTIN uses this value
of IBACK for each of the two boosters to determine the area of the RAIDATA
list to investigate. Any targets in this area which are neither

assigned nor in the potential target arrays (i.e., ISTATUS = -2) are
placed in the lost target list (LOST) and ISTATUS is set to -1.

The routine now determines which targets in the potential target arrays
should be removed to make room for the targets to be entered. The worth
of maintaining a target in the potential list is always stored in the
diagonal elements of the distance matrix D. The worth of maintaining

the target whose POTENT index is J is saved in D(J,J). The number of
targets to be dropped is determined by the input parameter PURGE. First
the routine computes the number of targets in the POTENT list which were
not entered in the list by the look-aghead feature of subroutine OPTBOOST.
If this number is less than the average number of targets per booster,

no targets are removed. Otherwise the routine omits the fraction, PURGE,
of these targets. The targets are omitted in order of increasing worth.
If this fraction removed does not leave sufficient room for the current
assignment, targets are removed singly until there is sufficient room,
The routine then enters the current booster assignment into the list.
Finally, as many of the lost targets as possible are entered.

Two sets of intertarget parameters are now computed. First, the :
intertarget distance matrix is computed. The entries in this array, D,
are defined as follows, for targets whose POTENT indices are i and j:

/7~ Square of actual downrange distance from %
target 1 to target j (this quantity is set i<
negative if j is uprange of i)
D(i,) = - . . j ~§
Worth of maintaining target in potential list i=73 :
Square of actual crossrange distance from i>j

\. target i to tavrget j

The off diagonal terms are computed first by simple geometry. For this
calculation, the downrange axis is defined to have the average launch
azimuth of all the targets in the list,

The diagonal terms, the worth of maintaining the target in the list, are
computed next. In order to keep targets in the arrays for at least two _
boosters, a target that has just been entered is given an artificially !

501 A

462-546 O - 72 -5

high value. For the other targets, this worth is computed according to
the formula given in the Analytical Manual.*

The second set of intertarget parameters is the worth of making each e
target the first target in the footprint. This worth will be used by
subroutine OPTBOOST to initiate footprint generation. When computing

the equivalent downrange distances, the downrange axis is defined by

the launch azimuth to the target currently being considered for selection
as the first target. The booster load is assumed to be the average
number of targets per booster, Multiple calls on function VALF are

made for each target. The Analytical Manual shows the formula which
defines this worth,*

Subroutine BOOSTIN is illustrated in figure 88.

*Volume II, Plan Generation Subsystem, Chapter 2, Analytical Concepts
and Techniques, Basic Sortie Generation, MIRV Missile Plans, Value
of Asszigning a Target to a Booster.

TATTTRTR rw"‘"’)‘!

g “§ 10 20 30

L m LnsWFirst °5.| Set Begin

; earch To
}_ Booster? Booster? First Tarect
;. 100 ! 40 y No

i Determine Number Yos

. Of Targets To Sut Begin Search

E Be Dropped From To Target With

| Potential Arrays Largest Azimuth

On This Booster /
45 ;7

Is Set End Search
. - Miss List To Target With q.__._J'
BEmpty?

Largest Azimuth
On Next Booster

Set Flag To +
Save Targets Entered
On Look-Ahead

105

Done Do For All 80
; 191 ot Targets Within i *
. Determine Order Search Bounds

j of

Removal

Is
Target
130 ¥ . Unassigned?
<__Dﬂc_______ Do For Number Yes
150 That Must 60 70
Be Dropped 50

Was This

/ Room
No Yes

Prine In Lost xo::dAI:

Warning Array? : ay
Targot Entered Yos

By
Look~Ahead?
170 v

’No

-} -~ Remove Targeq
From List

No 180
Is ggs;%g?fpﬁ&““t Can More Targets\Ye5| Drop one
Booster Assipnment? Bc Dropped? Hore

Yes

e e i v i

1

Fig. 88. Subroutine BOOSTIN
(Sheet 1 of 4)

503

. e R TR L) IR Lo
Lo e s g N - PR TR

T e

WY TR TS TR e

200
Reset Look-
Ahead Flags

Ly

Do For All

\Assignment _
T r i
|

Done

Targets In -
Next Booster B EEmE—— Target, Arrays

\
220 !
Enter Target
Into Potential

250

Do ror All

24$ Targets In Done 3
‘—‘ Lost Target

List

Determine Order
Of Targets .In
Miss List According
To Increasing
Potential Index

Has
Target Been
Added?

Yes

No
1 230

Add Target To
a4 Potential Target '
List

Fig. 88. (cent.)
(Sheet 2

5034

of 4)}

s et O o ol 2l i,

, -Compute Order Of
i ‘Targets By Rapge
\ And azimuth)

310 ' 4

Compute Average : 4

Range, Azimuth,

Sin2, And Cosine
Of Azimuth

Y .q

} Compute Values
! And Squares Of
: : Downrange/Uprange And

E Downrange/Crossrange ;
E . \ Ratios i :

Do Fer
320 All|Targets —————D—oﬂ?-p«(;)
.lg_ﬂiéj;lﬂél_

e

e

[o]

Do For All
Targets In Miss
List With Higher :

Done |
i ™ Potent Indices i
\ ‘
\ ¢D° !

Compute Downrange
Distance And
Save Square In

Distance Matrix

312
Was Yes Negate Value
Direction In Distance
Uprange? Matrix

No
314
Compute Crossrange

Distance And
B Save Squaie In

Distance Matrix

. Fig. 88. (cont.)
(Sheet 3 of 4)

Preceding page blank lﬁ? 504

e

Do For All

Initialize Worth Of

|

Da Maintaining Target
T:;Egtfliz —® In Potent Ariays
e To High Value I
Done %
Yes Has Target Been
In Array For Only
One Booster?
lNo 321,322,323
324 ' Compute Square
Do For All Of Intertarget
Targets In \w—L0—gul tquivalent Down-
Miss List Range Distance
None 330 é
Set Value Equal Accumulate ‘Sum
To Suu Of Reciprocals 0f Reciprocals
Divided By Age 0f Square
Of Distance
340
- Increase
| Age |
= Compute Range
gng::sAi; Do lkatios As
Mo Tist If This Were
[Fizst Target 350,360,370,380
Dene
Compute fquivalent
______L______ .?.(;TZZESA%TI\ |Do —pn Downrange Distance
Order Targets Miss List From P%r;t Target
By Value Of To This One
Starting Done
Footprint 390
400 Call VALF For
Set Value Worth Of Target

RETURN

“wH Target First In

of Making This

Footprint Into
VALFIRST Array

Fig. 88, (cont.)

(Sheet 4 of 4)

505

And Increment
Value For First
Target

i s it

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBRGUTINES CALLED:

CALLED BY:

Method

SUBROUTINE BOOSTOUT

This routine processes the hit list to assign
targets to boosters and returns potent indices
for use.

BOOSTOUT

None

POTENT, 1, 3, DEBUG, PRINT

ASSIGN, GOPRINT

T OOTPRNT

Subroutine ASSIGN is called to assign the entire hit list to the booster.
Subroutine BOOSTOUT then resets all the indices and pointers in the
potential arrays for each target in the hit list. For each of these
targets, the number of available positions in the POTENT 1ist (NFREE) is
incremented by one and the POTENT index of the target is placcd at the
end of the available 1list, IFREE.

Subroutine BOOSTOUT is jllustrated in figure 89,

é
;_;
. v 5
9
' |
E
§ (starr)
| Call ASSIGN To
Assign Targets |
In RAIDATA j
List According |
To Hit List

]
y 10 Do For All Targets
] In Hit List

‘Do

e RETURN

B Reset Potential
List Entry And
[Return Slot To
3 Available List
f
! Fig. 89. Subroutine BOOSTOUT
-3 507

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

This routine tests the sequence of targets in the hit list. It takes
each consecutive pair of targets in the list and determines if the total
equivalent downrange distance for the assignment would decrcase if the
order of delivery to the pair were inverted. If so, then it tests the
fuel use of the inverted target ordering. If the new order uses less
fuel than the old order, the new order is retained. Otherwise, the old
After checking the sequence of all consecutive pairs,
the routine checks the number of inversions performed in the last test
of all consecutive pairs. If any inversions were made, the process is
repeated. This continues until no further improvement is possible.

order is restored.

Subroutine CHKSEQ is illustrated in figure 90.

SUBROUTINE CHKSEQ

This routine determines if a reordering of the hit
list will reduce the total fuel used and, if so,
reorders the list,

CHKSEQ

None

FOOTIO, POTENT, WPNTGT, 1, DEBUG, PRINT

GOPRINT, FLYDIST, MISSIT, HITIT, TEST

EVAL

Ry

T TR

More Than
One Target
In Hit List?

No

10 Yes

Set Number Of
Changes to Zero et

Do For All Done

¥ Targets In
Hit List

&Do

Compute Distance
Saved If Target
Order Inverted

Is
No Inverted

67
Print
New
Oxder

- Distance
Less?

Have Arrays
Been Printed At
Least Once?

61

65

Increment Number
0f Changes

(]

Invert Target Order
And Test For Fuel Use

Was
Fuel
Saved?

Yes

66
Restore Old Target

rder And Decrement
Number Of Changes

Fig. 90. Subroutine CHKSEQ

509

Lt i el

ok m

L

R O

T b T T el L v BT

PURPOSE :

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

FUNCTION CRSTODWN

This routine computes crossrange-downrange ratios.

CRSTODWN

I = System type index (MTYPE)

R = Range to first target (nautical miles)
AZ = Launch azimuth to first target

N = Number of re-entry vehicles carried

FOOTDATA, SHRTDAT, PENADD

None

BOOSTIN, EVAL, FOOTEST

This function simply applies the crossrange-downrange ratio equations
whose parameters were input in subroutine TABLINPT. The formal parameters
are the system type number (MIYPE), the range and azimuth to the first
target, and the number ot re-entry vehicles currently on board.

Function CRSTODWN is illustrated in figure 91,

510

ORT 11000
SHOR' —

, Print
RANGE___/Determine System\ UNKNOWN
2000 I

Error
___Dpe

Message

LONG
1000 RANGE

Apply Set Azimuth Set Large

Short-Range Sign Indicator Value
Formula P051t1ve
Is Azxmuth Yes
1010
1020 Set Azimuth

// How Sign Indicator
Many RVs > Negaitlve
___On Board? -
1100

3
1200

Set RV Set RV
Number Number
Indicator Indicator

1900
Apply
~®|l.ong-Range
Formula

Fig. 91. Function CRSTODWN

511

FCIUPCIREHURISCIL R FESLNT SRFHY NPV SRR Y Y

SUBROUTINE EVAL

PURPOSE : This routine recomputes the value arrays for each
change in the potential target list. Entry REVAL

is used to recompute the intertarget distance matrix.

ENTRY POINTS: EVAL, REVAL
FORMAL PARAMETERS: None
COMMON BLOCKS: RAIDATA, 4, CONTROL, DSQUARE, FOOTIO, PARAMETR,

POTENT, RANGE, VALPARM, 1, 2, 3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, CRSTODWN, UPTODOWN, CHKSEQ, FLYDIST, VALF,
ORDER, REORDER

CALLED BY: OPTBOOST, IMPROVE

Method

This routine has three functions:

1. To determine placement in the hit list of each unassigned
target if it were placed in the current footprint

2. To calculate the worth of adding each target (individually)
to the current footprint

3. To recompute the intertarget distance matrix if necessary.

The determination of the correct placement in the current footprint of an
additional target uses an approximation to a minimal increased fuel con-
sumption criterion. A target is placed in sequence so as to require the
minimum increase in fuel use. The procedure for this calculation is exer-
cised once for each target in the miss list, Every possible footprint is
tested to determine the placement of the target in the footprint with the

maximim ratio of remaining available distance to maximum allowable distance
in the list.

Assume a test on the placement of the new target K between targets J and L

of the current footprint., Previvus operations in subroutine FOOTEST have
defined the following variables.

DELRAFT(J) - The maximum increased equivalent downrange distance
that could bhe traveled after target J (and before
target L) that would still allow completion of the
footprint within fuel constraints,

512

e T

TOFLY (J) - The equivalent downrange distance from target J to
target L.

Function FLYDIST is defined as follows:
FLYDIST(a,b) = Equivalent downrange distance between targets a and b.
For example, in this case TOFLY(J) = FLYDIST(J,L).

Then, the remaining available distance for insertion of target K
between targets J and L is defined as foullows:

DLEFT = DELRAFT{J)=- [FLYDIST(J,K)+FLYDIST(K,L)-TCFLY(J)]
The ratio whizh EVAL tests is
DLEFT/DELRAFT(J) .

The placement with the maximum value of this ratio is selected as the best.
Note that these equations are suitably modified for the cases of placement
as the first or last target in the footprint,

After selection of the proper sequence for a target, this routine computes
the worth of adding it to the footprint. This procedure for each target
requires a call on function VALF for each target in the miss list. As
explained in the Analytical Manual,* this function returns a value related
to a ratio of distances and a distance weighting function. The ratios
input by EVAL when evaluating target K are

FLYDIST (K, M) /DMAX

where M is the index of a target in the miss list and DMAX is the

maximum available remaining distance (DLEFT) determined previously for
target K. This ratio is computed for each target on the miss list, and the
results of the VALF calls multiplied by the relative target values RVAL

are summed to provide the total worth of adding the target to the footprint.

Before returning to the calling program, subroutine EVAL computes the
order of targets in the miss list according to decreasing tutal worth,
This ordering is stored in the NDEXVAL array.

The REVAL entry point is used whenever the first target in a footprint
has been changed. If the launch azimuth for this new first target is
significantly different (>.01 radians) {rom the launch azimuth of the
previous first target, then the downrange axis is redefined and this part
of the subroutine rccomputes the intertarget distance matrix,

Subroutine EVAL is illustrated in figure 92.

*Volume II, Plan Generation Subsystem, Chapter 2, Analytical Concepts
and Techniques, Basic Sortie Generation, MIRV Missile Plans, Value
of Assigning a Target to a Booster.

513

Ll

R

START Entry EVAL

1000

Are Thore Any \
assigned Targets?/

Yes

1005

Is There A
Current Footprint?

No

-

1010 9
Use Average

*

1020

Use Range And
Azimuth To
First Target

1030\
Retrieve Distance

Range
And Azimuth

Yes Is There A

Current Footprint?,

No

1100

Set Placement
Index To
Be First Target

1265 Y

T Store Negative
Dong > 1
All Targets Sgrzgt?n
In Miss List |gi270

¥ Do

Compute Ratio

Of Intertarget
Distance To Remaining
Available Distance

Y

Call VALF, Multiply
By RVAL, And Increment
Total Worth

i

Fig. 92.

Ratics

Set Up Distance
Weighting Parameter

040 [

Compute Reciprocals
0f Maximum
Distances Pcssible
(DEN)
[2

Check Sequence

Of Targets In
Hit List (CHKSEQ)

Do Do For

In Miss List
A

1280

Value Array

1280

Subroutine EVAIL
Part T: Entry EVAL

514

Dare
All Targets et Targets

9000

Determine
Ordepr Of

By Worth

1290

Negate All
Values In
Value Arra

N

g e g

i it sl - ol it

EURERDIANS B P

[P IG I AP

1200

Initialize Placement
Incex To_-1

L 4
Find Additional
Distance Traveled
If This Target
Made First

east Percentage
‘uel Use So Fury
No

Yes N Set Placement Index

1210

To Be First Target

Y

Save Percentage
Fuel Used

1220
1240 Do For All Targets Lone Find Additional Distance
‘-—-——P'{ In Current Footprint——-——Q'—LQ— Traveled [f ‘New
} Except Last Target Made Last
Do

Find Additional
Distance Traveled
If New Target
Added After This
Target In Footprint

Least Percentage
Fuel Use So Far?

Yes
1230 \
Set Placement Index
To Be After
This Target

Save Percentage Fuel
Used And Remaining

Available Distance

Fig. 92. (cont.)

Part I1:

6

PR S W Lanru

And Remaining
Available Distancy

Least Percentage
Fuel Use So Far?
Yes
1250

Set Placement Index
To Be Last Target

y

Save Remaining
Availahle Distance

1260

Save Placement Index
In JAFTER Array
Y
Initialize Total
Worth To Zero

Yes
@ Nogef) 280

Determination of Target Sequence

PERCNRNPIRIY FtRE LT <

T e

Entry EVAL

No

Any Targets

In Footprint?

10

Is Present Azimuth

To First Target

Significantly Different
From Azimuth

Used to Compute

Distance Matrix?

l Yes
15,30 ”

Order Target Indices
By Increasing
Potent Index

Entry
EVAL

iR L3 e

. Save Azimuth
40 Do For All Done Used To
F———-’ Potential p—————""—"—"" Generate
Tarpets Matrix
Do

Set I Index

Do For
Done All Potential
g————

rargets With "_—1

Greater Indices
Do

Set J Index

Recompute
D(l,d} jp—
D(J,I)

Fig. 92. (cont.)
Part TII: Entry REVAL

516

T T e T T,

NS]

FUNCTION FLYDIST

PURPOSE: This routine computes equivalent downrange distance.
ENTRY POINTS: FLYDIST I
FORMAL PARAMETERS: N - POTENT index of first target

M - POTENT index of second target
COMMON BLOCKS: DSQUARLE, RANGE, 1

SUBROUTINES CALLED: None

CALLED BY: CHKSEQ, LVAL

Method

This function uses the intertarget distance matrix D to compute the
equivalent downrange distance from the target with POTENT index N to the
target with POTENT index M. It assumes that functions UPTODOWN and
CRSTODWN have already been called to load the correct range ratio para-
meters into common /DSQUARE/. This function merely manipulates the data
in the distance matrix to provide the calculations for equivalent down-
range distance as described in the Analytical Manual, Volume II, Plan
Generation Subsystem, Chapter 2, Analytical Concepts and Technigues,
Basic Sortie Generation, MIRV Missile Plans, Equivalent Downrange
Distance,

This function is called an extremely large number of times in any run of
program FOOTPRNT. Up to 15% of the total exccution time may be spent in
this function and in the SQRT function called by this function. It is
therefore very important that the execution time c¢fficiency of this
function be maintained.

Function FLYDIST is illustrated in figure 93.

517

10

DOWN=D1

CROSS=D2*CD2

START

Save
Target
Indi%cs

!

D(1,J)
D(1,1)

D1
D2

Distance
To Minimum

DOWN=-D2
CROSS=D1*CD2

y

Yes

Is

J Uprange
From 1?

No
60

Compute Sum Of
Squares Of Distance

50

Convert Down
DOWN=-DOWN*UD2

Is It
Less Than
Minimum?

Compute
Square [RETURN
Root -

Fig. 93. Function FLYDIST

518

SUBROUTINE FOOTEST

PURPOSE : This routine tests footprint feasibility.

ENTRY POINTS: FOOTEST

FORMAL PARAMETERS: None

COMMON_ BLOCKS: FOOTIO, PARAMETR, POTENT, RANGE, 1, FOOTDATA,
SHRTDAT, PENADD

SUBROUTINES CALLLEL: CRSTODWN, UPTODOWN. ABORT

CALLED BY: ADDRV, TEST

Most of the input/output for this subroutine is contained in common
/FOOTI0/. Data on the target set to be tested are contained in the

arrays RIN and THIN (for range and launch azimuth, respectively).
Subreitine FOOTEST computes the cquivalent downrange distance between cach
successive target in the footprint. It then determines the number of RVs
that can be delivered to the target set without violating the fuel consump-
tion constraints. If an RV can be delivered to each target in the sct,
then this subroutine computes the effect of using the total remaining fuel
load to deliver one more RV. Tt outputs the maximum equivalent downrange
distance that the remaining fuel will allow from each point in the
footprint.

Figure 94 displays the processing flow for this routine. Since the methods
used to test footprints are esscntially the same for both long-range and
short-range systems, only the long-range method will be described. The
short-range system method differs only in the details of processing.

Fart I: Distance Computation

Before testing the footprint for feasibility, the routine calls tunctions
CRSTODWN and UPTODOWN to retrieve the correct downrange-crossrange and
downrange-uprange ratios. ‘Then it computes the cquivalent downrange
distance between successive targets in the Footprint., These distances are
placed in array DT, which is cquivalenced to array TOFLY in common
JPOTENT/ . This subroutine does not use function FLYDIST for the distance
computation, but rather computes the cquivalent distance from the basic

519

.

range and azimuth data. There are two reasons for this independent cal-
culation. First, this subroutine can test any data contained in common
/FOOTI0/, without considering the data in the potential target arrays.
Second, the footprint testing subprograms, FOOTEST, CRSTODWN, UPTODOWN,
SETDATA, and TABLINPT, which comprise the testing module, were designed

to be as scparate as possible from the other subprograms. This modular
design allows for modification of either the assignment module subprograms
or the test module subprograms without excessive manipulation of the
interface between the modules,

Part II, Sheet 1: Long-Range Systenm

In the following discussion, a "leg'" of a footp:int refers to the line
between two successive targets in the footprint., The Jth leg will be

the line between target J and target J+1. The length of these legs (in
terms of equivalent downrange distance) deiermines the feasibility of the
footprint.

The testing algorithm (for the long-range system) begins with a determina-
tion of the number of re-entry vehicles in the footprint. A number
indicator JRV (NRV for short-range) is set to specify the correct set

of footprint parameter constraint cquations to be used. These equations
will vary according to the number of RVs on board the bus. In order to
save processing time, FOOTLST precomputes all the nccessary fuel consumption
and booster range parameters and stores them in a set of temporary arrays
(e.g., RSAVE, REXSAVE, and CSAVE), These parameters will change only if
there is a new first target in the footprint with a significantly different
range (or azimuth for the long-range system). Thus, on each call to
FOOTEST, the range and azimuth of the first target are tested against the
previous values for these factors, If either factor differs from the

saved value by an amount greater than or equal to PDIFF (a preset test
variable), then the range and fuel parameters are recomputed. The larger
the preset value of PDIFF, the fewer times these parameters will be
recomputed.

If the long range system has a full load of pernctration aids (i.e.,
MTYPE = 3), then the fucl load at booster separation is computed by a
special set of equations (statement 3000).

The main testing algorithm begins at statement 1308 (2008 for short-range)
with a calculation of the total fuel load availablc for footprinting and
the maximum booster range. If the range to the first target exceeds the
maximum booster range, some of the fucl is used for range extension.

This range extension fuel is subtracted from the total load available for
footprinting. If this subtraction results in a negative fuel load then
the subroutine returns with the feasibility indicator, IFEAS, set to 0.

R (PO -t i e

T AT e S B bl

This variable contains the number of targets in the footprint that can
be reached within fuel constraints,

Part II, Sheet 2: Long-Range System (continued)

If there is some fuel left for use on the legs, the feasibility indicator
is set to 1 and the number of re-entry vehicles to be delivered NTOGO is
set to the original number minus one (since one RV has been delivered to
the first target point). FOOTEST then computes the fuel use on each leg.
It retrieves the correct fuel consumption rate for the current load and
the equivalent downrange distance for the leg. A division gives the amount
of fuel used on the leg. If there is not sufficient fuel left for that
leg, the fuel remaining indicator FULLEFT is set to 0 (statement 1365),
and the routine returns control to the calling program. If there is
sufficient fuel for the leg, the fuel remaining is decremented by the
fuel used on the leg, the feasibility indicator is incremented, and the
number of RVs on board is decremented. Then the next leg it tested.

When all the legs have been tested the fuel left after footprinting
FUELEFT is saved (statements 1390 to 2060). If the booster is currently
carrying the maximum allowed load, control returns to the calling program.
if more re-entry vehicles can be added, the best use of the extra fuel is
calculated (starting at statements 1396 or 2070).

Part 1I, Sheet 3: Long-Range System (continued)

This section begins by resetting the initial load indicator to show the
potential addition of another re-entry vehicle to the original payload.
(If necessary, the number indicator, JLV or NRV, is reset.) The same
computations as were done previously to test the footprint are repeated
with the increased load. This time, however, the difference in fuel use
between the original load and the increased load is saved in array EXTRA.
The value of the element EXTRA(J) is the amount of extra fuel that would
be needed on leg J (from target J to target J+1) to carry one more RV,
These computations are performed in the "'do loop" ecnding on statement
1420 (or 2100 for short-range).

Then, this extra required fuel is subtracted, cumulatively, from the fuel
left after completion of the footprint (''do loop'" ending on statements
1430 or 2110). The elements of the array EXTRA are changed to contain

the successive results of these subtractions. The contents of EXTRA(J)
now contain the fuel that would be available for further footprinting if
a new target were added to the footprint between target J and target J+1.
The algorithm assumes the extra re-entry vehicle is carried on the bus for
the deliveries through target J. Then the extra re-cntry vehicle is
delivered to another target and the bus procecds as beforc. The amount

521

of fuel that could be used for the extra flying distance created by
insertion of a new target is now contained in the EXTRA array.

This extra fuel available for further footprinting is now converted into
a maximum allowable distance. The testing algorithm assumes that all the
extra fuel would be used by the bus to deliver the added re-entry vehicle.
(Note that thc fuel needed to complete the footprint after that delivery
is reserved and cannot be used for the addition.) Thus, the extra fuel
for each leg is multiplied by the saved consumption rate for each leg, CR,
to calculate the maximum extra flying distance allowed on the leg. This
distance is stored in array DELRAF1 in common /FQQTIO/. Subroutine EVAL
uses this distance to determine the worth of adding a new target to the
footprint. Since other subprograms divide by these distances, the values
placed in the array are increased to a minimum nonzero value (EPSILON,
preset to .00000001) to allow that division. This completes footprint
testing and control returns to the calling program.

Clear Output
Arrays

v

Retxieve Distance
Ratios

Y

Done Do For All Targets

In _Assignment
; Do

Compute Square
Of Down-

range Distance

To Next Target

20

Apply Uprange/
Downrange

Ratio

Compute Square
Of Crossrange

Distance To i
Next Target

40 ‘

Compute Equiva-
lent Downrange
Distance For

This Leg

What Is
System Type
Number?

Long- Short. Long-Range
Range Range With Penaids

Fig. 94. Subroutine FOOTEST
Part I: Distance Computation

523

1110

Set
JRV = 1

1200

1120

Set
JRV = 2

Set Azimuth

—p»| Indicator

Positive

D

‘s
Azimuth
Negative?

1210
(o e
Set Azimuth
Indicator
Negative

No y<'

Has
Range Or

Significantly?

No

1308y

Azimuth Changed

1301

Recompute
Footprint
Range And Fuel
Parameters

Compute Maximum
Booster Range,
Total Fuel Load

Does
Systenm
Have Penetra-
tion Aids?

No

1310

Compute No
Fuel Needed To
Lxtend Range

Is Range To
First Target
Within Booster

Range?

1350 p Yes

3000

Recompute Fuel
Load
Parameters

—]

Subtract Fuel
Used For Range
Extension

Fig. 94. (cont.)

Part II:

Long-Range System

(Sheet 1 of 3)

524

L TR T R R

§ 4

: Initialize
Feasibility
; Indicator
‘ (IFEAS)

:
Initialize
i Number of RVs

: On Board
‘ (NTOGO)

1390

Is
This Maxi-
mum Load?

Do For Legs [Done | save Fuel
['y ' In Footprint Left

Do

Yes

3 Retrieve Fuel
! Consumption
Rate

=

Compute Fuel
Used On This
Leg

1365

Set Fuel Left

Sufficient To 0

Fuel?

i Yes
2 1370

Decrement Fuel
Left; Increment
Feasibility

Indicator

e

1380

Decrement

‘ " Number Of
. RVs On |

Board

Fig. 94, (cont.)
Part II: (cont.)
(Sheet 2 of 3)

525

R

1400

()

Add One RV
To Total Load

Recompute Maximum

Remaining Fuel

v

Compute Fucl
Needed To
Extend Range

N
.‘_f

I's Range To
First Target
Within Maximum
Booster Range?

1430

al Fuel Use From
Total Fuel Left

Fuel After
Each Target

Subtract Increment-

Do

1410 gYos

Compute Excess
Fuel Before
First Delivery

la———4 Do For All !,egs
To Determine Excessg——e——pe| In Footprint

Y

f Done

Done

1450

Increase All Distances|Done

Below Minimum Value
(EPSILON) To That Valu

&)

Compute Maximum
Allowable
Distance Before
First Target

'

Do

Do
Do For All Legs-—-bj

In Footprint |eg—

1397

Increase
JRV

Booster Range And peg———nr ———

Retrieve Fuel

Consumption
Rate For

This Load

Use To Fly
Distance Ta
Compute lncre-
mental Fuel Use

1420 Y
Decrement
v] Number Of

RVs On Board

1440

Do For All Legs p=——im

In Footprint |

Fig. 94, (cont.)
Part IT: (cont.)

(Sheet 3 of 3)

Multiply Excess Fuel

By Mileage Rate To
Determine Maximum
Allowable Distance
After Each Target,

2010

: Con|
] u

Ex

2000

Has Runge To
First Target
Changeed?

2008 Y No
Set Total
Fuel
Load

Y

- Done

2001

Save New
Range

Yes

1

2005

Do Far All
Possible
Loadings

Compute Fuel
Lond And
Consumption
Parameters

pute Fuel
sed In
Range

Ye

S
ar

Is Range To Fi

rst

Booster Range? :

get Beyond Maximum

tension

2020

+ No

L .

Subtract Range
Extension Fuel
1f Any

2030

No

< luel Lefte? }

‘ch

Sct Feasibility Indicator,
Initialize Number of RVs

On Board

v

2060

Yes

Do For All

‘-—-*~—————i-

Legs In Footprint

[Dong | Save Fuct
Left

*Do

Is Boosler
At Maximum
Load?

Retrieve Fuel Consumption
Rate, Compute fuel Usc On
This Leg, And Subtract
From Total Fuel Load

Save Fuel Left,

Increment Feasitility

Indicator

205

0

—————

Decrement Number
Of RVs On Board

Pig. 94.

(cont.)
Part TIT:

527

)

No

Short-Range System
(Sheet 1 of 2

.
3
!
.
[.'.
J
3
i

2080

Compute Yes /Is Rang 5 :
s Range to First Target
‘;:ega:‘:ssd <—< Greater Than Maximum
T - "
Extcnsfon Booster Range?

Set Up All Parameters
For One Extra RV

Y

2090 * No

Subtract Fuel Used In
Range Extension,If Any

\
Do For All 00 .
2110 Legs In Footprint
Done
Subtract

Incremental Fuel
Use From Total
Fuel Left To
Determine Excess
Fuel After

Do
[Do For All

| Legs In Footprint

‘ Done

Each Target

Compute Maximum
Allowable
Distance Before
First Target

Do
Do For All
Legs In Footprint

Done

Compute Maximum
Distance For
Last Target

19999

Fig. 94. (cont.)
Part T11: (cont.)

{Sheet 2 of 2)

1 Retrieve Consumption
Rute, Compute
Incremental Fuel Use,

2100 +

Decrement Number
Of RVs On Board

Multiply Excess Fuel

» By Mileagc Rate To

Determine Maximum
Allowable Distance
After Each Torget

2120 ¢

Increase All Distunces)
Below Minimum Value

(EPSILON) To That Valu

RIS

. 2
]
i
K
?
g Print Error
? Message For
; Illegal System
: / Number
*’ !
g Increment
,‘ Error
;‘ i Counter
: 11002
. Have More \
] han Five Irrors)-Yes ABORT
: Occurred?
u ;
RETURN
k!
Fig. 94. ({cont.) :

Part IV: Error and Termination Blocks

SUBROUTINL FULLSAVE

PURPOSE : This routine computes the fuel saved by the omission
of cach target in the footprint.

ENTRY POINTS: FUELSAVE
FORMAL PARAMETERS: None
COMMON BLOCKS: FOOTIO, POTENT, WPNTGT, 1, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, TEST, MISSIT, HITIT

CALLED BY: IMPROVE

Method

This subroutine takes the current hit list and calls subroutine TEST to
compute the fuel remaining after completion of the weapon deliveries.
Then, FUELSAVE modifics the hit 1list by the removal of the first target.
TEST is called again and FUELSAVE calculates the difference in fuel used,
The omitted target is returned to the hit list in the same position and
the next target is omitted. This process of omission and testing is
continued until the deletion of cach target is tested.

The reciprocal of the fuel saved by the deletion of cach target is stored
in array COSTEFF in common /1/. ‘The values in this array arc used by
IMPROVE to determine the order in which targets will be deleted during the
improvement phase.

Suhroutine FUELSAVE is jllustrated in figure 95.

530

L . P RN L -

S S SOOI PUUUI L L D S

START

‘ Call TEST
' To Relicvve Initial
Fuel Figures

v

: Save Fuel
Left After
Footprint

Dune
10 Do For All Targets .
* On Hit List RETURN
4} Do

Call MISSIT
To Remove Target
From Hit List

Y

Call TEST
To Compute Fuel
Left Afier
Footprinting

v

Compute Fuel
Saved By
Omitting Target

¥

Call HITIT
To Return Target
To Hit List

'

Save Fuel
bty Use Effectiveness
Of Target

Fig. 95. Subroutine FUELSAVE

462-546 0 - 72 -7

SUBROUTINE GOPRINT

PURPOSE : This routine prints data at various stages of
processing.
: ENTRY POINTS: GOPRINT
% FORMAL PARAMETERS: IX - Data block number
COMMON BLOCKS: MASTER, WPNGRPX, STRKSUM, RAIDATA, 4, CONTROL,

FOOT10, FOOTSAVE, INDEX, LOADATA, PARAMETR,
PERFORM, POTENT, RANGE, VALPARM, WPNTGT, 1, 2, 3,
FLAG, DEBUG, PRINT

? SUBROUTINES CALLED: PRNTABLE, PRNTLOAD, ABORT
/ CALLED BY: FOOTPRNT, ADDRV, ASSIGN, BOOSTIN, BOOSTOUT, CHKSEQ,

EVAL, REVAL, FUELSAVE, HITIT, MISSIT, IMPROVE,
INITASGN, INPCT, OUTPOT, NEWCOOR, OPTBOOST, REMOVE,
TEST, TRANSFER

Method

This is the subroutine which does most of the printing in a run of the
program. Each subroutine that desires a print sets the print request
number, ICALL in common /PRINT/, and calls GOPRINT with a data block number
as a formal parameter. These data blocks are sets of data cf similar

size and function that are printed to display processing results. Table 28
shows the data block definitions.

Upon entering GOPRINT, the error flag IMUST in common /PRINT/ is tested.
If it is greater than zero, a print is produced regardless of the print
flag setting. If there is no error (IMUST = 0) then GOPRINT tests the
flag for the print request number* ICALL. If this flag was set true by
subroutine PRINTSET, the print is produced. Otherwise control returns to
the calling program with no further action by GOPRINT. If the flag is
set true, then a computed CO TO statement directs processing to the print
of the data block requested in the formal parameter.

Two special subroutines, PRNTABLE and PRNTLOAD, are used to print the 1
footprint parameter tables and the booster loading data, respectively. 1

At the end of printing, GOPRINT determines if the print recquest number
is the same as the dump number, IDUMP in common /FLAG/, set by

*Also called "print option number."

532

subroutine RDCARDF, If 50, subroutine ABORT is called to produce a
memory dump,

: N Otherwise control is returnod to the calling program.
. iy)

Subroutine GOPRINT is illustrated in figure 96,

533

Table 28. Data Blocks Used in Print Requests
(Sheet 1 of 2)

;: NUMBER COMMON DESCRIPTION
é; 1 WPNGRPX Group data read from BASFILE
E 2 PARAMETR MIRV system general parameters
% 3 eeeee- Detailed footprint parameter tables
: S e Detailed booster loading tables (not used)
é 5 STRKSUM Gross strike data block
E 6 RAIBATA Detailed strike data block
7 eenea- Range and launch azimuth of target set
(includes index according to azimuth)
f 8 2 Status array, pointer arrays, booster
] loadings and pointers
. 9 RANGE Uprange/downrange, crossrange/downrange ratios
10 DEBUG List of chain of subroutine calls
3 11 POTENT Poteniial target arrays; includes hit, miss,
{ 1 lost and free lists as well as age and value
. arrays
7 12 CONTROL Control parameters for program
13 FOOTIO Input/output data for {ootprint tester
14 PERFORM Gross performance parameters
15 eeeee- Same as number 11, /POTENT/ and /1/
16 WPNTGT Indices for moving targets hetween hit and ;

miss lists (includes target to booster
assignment indices)

17 3 Temporary storage of various parameters for

RANGE all targets in potential target arrays.
(includes common /RANGE/, number 9)

534

Table 28, (cont,)

NUMBER COMMON
18 INDEX
19 FOOTSAVE
20 mmeee-
21 meeee-
22 emeee-
23 VALPARM
24 LOADATA

(Sheet 2 of 2)

DESCRIPTION

Indices for adding and removing targets from
potential target arrays; includes indices
of targets added on "loek ahead"

Indices of targets in footprint saved during
processing in OPTBOOST

Intertarget distance matrix for potential
targets

Final plan
Distribution of re-entry vehicles to boosters
Program control parameters

Booster loading control information

]
|
K
|
1
)

535

No Is Print
Active Now?

START

s This An Yes
Error Print?

No

1

Yes
2

Print Heading
For Print

Go To Block For

Is This An
- 3 Error Print?

Fig. 96.

i See
Correct Print .
According To Sucggeggng
Formal Parameter L
210 { 920
Is This Print
Code For Memory Yes A%%k%
Dump?
No
1000
RETURN

Subroutine GOPRINT

Part I: Main Processing

536

B B U Lo T A WY

Data Block 1

4 ! Do Tor All
.o [Print Do,
Weapon
Heading Croups

Save Group
Characteristics

Ts CGroup\ No
A Missile
Group?

; Done
; 12,13

g Retrieve
: IMIRV

Value

Yes

14 Y
. ’ Print
3 L Group 4

Data

Data Block 2

Do For Each Print

Print Is Syuem

Potential System

("D—ﬁlH«ading}N System Dofinud'z Dnn /
i u I
Data Block 3
Call -

PRVIABLE {200
Data Block 4

Call
R PRNTLOAD

Data Block 5

P Print
H r;’;t Contents Of
cacing /STRESUM

Fig. 96. (cont.)
Part II: Data Blocks 1,2,3,4,5

537

Data Block 6
) . Print
@ “L:“j?s Contents Of
e /RATDATA/

Data Block 7

Print Range And "
Azimuth Data

Data Block 8

Print Print Staius For Print Status
80 Heading Targets And Boosters For Targets

Data Block 9

Prin. '
@ Contents Of @

/RANGE/

Data Block 10

Print 7
Contonts OFf @
/DEBUG/

Fig. 96. (cont.)
Part III: Date Blocks 6,7,8,9,10

538

S e pTe

Do For All Slots
In Potential Target
4 List

(i)

+[m

Is There A Lost
Target In This Slot?

112

Print Lost
Target Data

114 i‘

Is There A Free
Index In This Slot?

Yes Print Free
Space Data

115

117 J

Is There A Miss
List Entry In
This Slot?

118

Print Miss
List Data

Is There A Hit
List Entry In
This Slot?

)-.‘

154 l

Print Basic

JRCICYS P FU Yt O S VS

Potential Target
Data For This Slot

Fig. 96. (cont.)

Part IV:

539

152

Data Blocks 11,15

Data Block (2
— Print Contunts
@ Of /CONTROL/
Data Block 13
Print Contents
Of /FOOTI10/
Data Block 14
Print Contents @
Of /PERFORM/
Data Block 16
Print Contents
Of /WPNTGT/
Data Block 17
Print Contents Print Index
of /3/ Arrays
Data Block 18
Print Contents
Of / INDEX/

Data Block 19

Print Content:. Of Print Contents Of
/FOOTSAVE/ For /FOOTSAVE/ For @
First Footprint Second Footprint

Fig. 96. (cont.)
Part V: Data Blocks 12,13,14,16,17,18,19

540

200

print
Heading

Do For All Slots
In Potentlal

P
i
'
'

20
rgave Target
{ Potent Index

Target In

Target List This Slot? In 10K Array
Done 420 []
| -

Determine Number
Of Blocks Of 10
To Print (NTIMES)

y

Done Increment Are There
,;05 Do NTIMES Target Targets Remaining :
J | __Countex | To Be Prinked?

0
{l‘ln Yes
Determine First
And Last Index
For This Block

Y

Heading

)
Print Do For All '
Heading — Potentiul
“ Targets
+ * Do
Done Do For All]
Potential Save Row |
- Targots Index (IC)
*Do
-t 208
Save Row iJo .
Index (1C) Do For All #{ Save Distance Data
R;:’:‘::‘;’ In DTEMP Array
! 207 8
Do
2‘::2:"#‘ Save Distance Data
’I‘hig Block ;one In DTEMP Array rint Distance Data

From DTEMP Array,

205 *

i
Print Distance Data y
From DYEMP Array !

Fig. 96. (cont.)
Part VI: Data Block 20

541

1 @

Print
Heading

Initialize
Target And
: Booster Counters

212 ‘

Increment Target

r_’ Counter

| Have All Targets Yes
f Been Processed?

T TR TSR ATt

No 214
213
Is Index Number Yes Increment Booster
Negative? Counter
lNo ‘;
216 -
Print Booster
Increment Delivery Heading
Order Counter

{ Initialize Delivery

Save Absolute Order Counter
Value Of Index
Number

' |
Print Target
Data

Fig. 96. (cont.)
Part VII: Data Block 21

542

Initialize Counter ! I
And Maximum Load

\
. 222

Do For All Words Do 1 Clear Word
In 10K Array To) To Zero
Be Used v

{ *Done
\ \
Do For All Boosters | Done

‘ » In L‘l‘he Group
' . ' ‘Do

Save Number \
. Of RVs Assigned !
g " ! To This Booster

Were Any No Use Last

RVs Assigned Word Tn

To This Booster? _ I0K Array
223 “es

\ " Increment Number . ;
. hf~—{ Of Boosters With
This Lloading

Print
Heading

225

Print
Values For
No \Load
Bookters

Did Any Booster \ . Y
Have No Load? o
No

Done
Possible -—--—b-
L. : - Loadings
*Do ‘ 227
- - y Compute
0 Did Any Booster Yes
4 Lo Percent Of Boosters
¢ <Have This Loading? Loaded This Way
' J Print Values For
' 4 _L This Loading

229 Do Fori All
N

Fig. 96. (cont.)
‘Part VIII: Data Block 22
i

543

Data Block 23

\ ’ Print
Contents Of
/VALPARM/

Data Block 24

Print
Contents Of
/LOADATA/

]
1

Fig., 96. (cont.)
Part IX: Data Blocks 23,24

544

ol

S ————

SUBROUTINE HITIT

PURPOSE; This routine enters and removes targets from hit
and miss lists,

ENTRY POINTS: HITIT, MISSIT

FORMAL PARAMETERS: None

COMMON BLOCKS: POTENT, WPNTGT, 1, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT

CALLED BY: CHKSEQ, FUELSAVE, IMPROVE, OPTBOQST

Method

This routine performs the list manipulation operations required to move
a target between the hit and miss lists.

The first entry, HITIT, is used to move a target from the miss list to
the hit list. The required data for the move are contained in common
JWPNTGT/ as follows:

IPOTGT - Potential target index of target to be moved

JAFT - The position in the hit list after which the target is
to be added.

[f the added target is to be the first target in the hit list, JAFT is set

to 0. This subroutine resets all the indices and pointers to move the
target to the hit list.

The second entry, MISSIT, is used to move a target from the hit list to
the miss list. The target whose potential target index is IPOTGT is re-
moved from the hit list and placed at the end of the miss list. The
entries which followed the removed target on the hit list are moved up on
that list,

Both entries use the INVERSE array to determine the position of the target
on the respective lists. If INVERSE (IPOTGT) is greater than zero, the
value is the position of target with potential index IPOTGT in the hit
list, If the value is negative, it is the position in the miss list.

Subroutine HITIT is illustrated in figure 97.

545

oo d Tasel ol L

ey e -

s e o

20

START

Entry
HITIT

Save POTENT Index
And Position Of
Target To Be Added

<:V Negative? e

Is Target Position\ Yes

No

10

Set Placement

Is Target Pnsition\Yes Pointer (IHERE)
Zero? To 1 For First

{yo

Determine Target's Current
Position in Miss List; Decrement
Number of Targets In Miss List

40

v

———————

Target

!

Do For All
Succeeding Targets
In Miss List

1_Do
30
"

‘ Done

Move Target

Data Up One

Slot In Miss
List

Do From Placement
Pointer To End Of
Hit List

Done

‘Do

Move Target Data
Pown COne Slot In
Hit List

Fig. 97.

Insert New Target
Data In Proper
Slot In Hit List

—

RETURN

Subroutine HITIT

Part I:

546

Entry HITIT

ntry
MISSTT

START

Save POTENT
Index Of Target
To Be Removed
From Hit List

- I
.
3

Increment Number
OF Targets In Miss
List

v

Add New Target's Data
To End Of Miss List

&

Decrement Number OF
Targets In Hit List

!

bo For All Targets In
Hit List lFollowing
Tarpget To Be Removed

‘ Da \

Move Target Data Up
ne Slot In Hit List

110 Done |

Fig, 97. (cont.)
Part I1T: lntry MISSIT

LU Y TR B

SUBROUTINME IMPROVE

PURPOSE: This routine improves the footprint by removing
the target that uses the most additional fuel
and adds other targets if possible.

ENTRY POINTS: IMPROVE
FORMAL PARAMETERS: None
COMMON BLOCKS: CONTROL, FOOTIO, PARAMETR, POTENT, WPNTGT, 1, 2,
3, DEBUG, PRINT
SUBRQUTINES CALLED: GOPRINT, HITIT, MISSIT, TEST, FUELSAVE, EVAL, REVAL,
CALLED BY: OPTBOOST
Method

This subroutine attempts to improve the best footprint provided by sub-
routine OPTBOOST. It investigates minor modifications to the footprint
to determine if more targets (or targets of greater value) can be added
to the footprint. If there is only one target in the footprint, IMPROVE
assigns to the footprint the most valuable target that is feasible. (See
part II of figure 98.)

If the footprint input from OPTBOOST contains mocre than one target, IMPROVE
determines the best target to remove temporarily from the footprint. (See
part I of figure 98.) Subroutine FUELSAVE is called to determine the
marginal fuel use of each target in the footprint. The target with the
greatest fuel use is removed from the hit list.

The processing shown in part III of figure 98 determines the best target
(or targets) to add to replace the temporarily omitted target. Subroutine
EVAL (or REVAL) is called to datermine the worth of adding each target to
the footprint. IMPROVE attempts to add each unassigned target (excluding
the temporarily remcved target) to the footprint in order of decreasing
worth. This process continues until either all unassigned targets have
been investigated or until the booster has been assigned its maximum
load. The routine then determines if more than one target has replaced
the omitted one. If so, the cycle repeats with a new determination of
the best target to remove temporarily. (Note that if the target selected
for removal was the last target added in the improvement phase, the sub-
rcutine will return control to the calling program without removing the
target.)

548

The fwprovemeat phase ends when IMPROVE cannot add more thuan one target
aftor romoving the target with maximal fuel uso (soe part 1V of figure
98). U1 no target could be added, IMPROVE returns the omitted target to
the tfootprint, 1t only one target was added, IMPROVE determines which
target, the removed or the added, is more valuable, The move valuable
target is then used in the tootprint to the eoxclusion of the other,

I IMPROVE has returned the omitted target to the footprint, its feasi-
bility is checked once again, U the tootprint is not feaszible the tar-
pets have beon shuffled during processing., The subroutine will print

4N error message to this etf'fect and return control in the normal fushion,

Note that [IMPROVE never attempts to return the omitted tavget during the
iaprovement phase shown in part 110 of figure 98, This procedure assumes
that OPTBOOST has previously investigated all the possible footprints
containing that target and it is move efficient for IMPROVE to ignore
those possibilities,

HERY

' (smr)
y

Are There \

Uhasaigned Y12 »{ ReTuRn

Targcts?/ \

Yes
Was Saved Target
[Just Added To List?
150 L“"
Initialize
Remove Target 160
Indices From Hit List
| 110 ‘ Cull REVAL To
/ '/ Reevaluate Distance

Matrix; Evaluate

Determine Marginal New Yes .
Fuel Use For First Worth Of Each
; Each Target Target? Target Addition

To Footprint

170 No
:) Call EVAL To
. Save Fuel Use And Evaluate Worth Of
! Index For First Target Each Target For
. Addition To Footprint

180 v

Initialize Pointer

140 _ 1po For All Targets] Done

In Hit List To Miss List | ¥
Do 190 ‘
: a Determine Sequence
: LN . Is Fugl use F.;’.:; Of Investigation Of
4 arget secuir Jan Targets In Order Of
Saved Value Decreasing Worth
‘Yes
390
Save Fuel Use And
Index Of Target

Fig. 98. Subroutine IMPROVE
Part I: Removal of Target with
Maximum Fuel Use

550

PRPORETY Pl

T T T T

Save Value
Of Target;
Remove Target
From Hit List

y

50 Do For All Done
r_—_’ Unassigned S—
Targets

Do
No Is Value Of

This Target Greater
Than The Saved Value?

Yes
20

Add Target To
Hit List And
Test Feasibility

40 No

Remove Target
= TRE—— &

Add Single
Most Valuable
Feasible Target
Saved

30

Save Value
And Index
Of Target

From Hit List -

Fig. 98. (cont.)

Part IT1: Single Target Improvement

551

@, _ Increment Pointer
) To Miss List

Yes

f More
Unassigned
Targets?

More Than
One Target
Added?

210
Determine Next

Most Worthy
Target To Assign

Yes / Was This
T

i arget Just
\ Removed?
250 No 310
Deternine Placement Reevaluate
In Hit List Distance
Matrix
Yes
- No Potentially
Feasible? New First
Target?
Yes
270
No
Add Target To 320
Hit List And Tes: Evaluate Worth Of
Feasibility Each Target For dy
Addition To Footprint
280

Remove Target
From Hit List

i

330,340 L

Initialize Pointer To
Miss List And Determine
Sequeace of Investigation

Feasible?

No Buoster At

Maximum Load?

Fig. 98, (cont.)
Part III: Determination of Best
Replacement Targets

552

: Yes
: : 370 7
Were Any Yes Is Added Target More
Targets Added? Valuable Than
That Omitted?
*No
i 390
; No
' Return Omitted 380
Target To
Hit List Remove Added Target,
Test Feasibility,
N Reevaluate Distances
And Worth
Test Feasibility
0f Current
Footprint
Feasible? \ Yes 2
No
400

Print Error / »
Message / —8

Fig. 98, (cont.)
Part IV: Check Improvement

553

SUBROUTINE INITASGN

PURPOSE: This routine performs the initial assignment of
targets to boosters,

ENTRY POINTS: INITASGN

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL, PERFORM, POTENT, 2, DEBUG, ‘
PRINT

SUBROUTINES CALLED: GOPRINT

CALLED BY: FOOTPRNT

Mothod

This subroutine performs the list manipulation required to assign all the
targets to the boosters in an initial assignment. This assignment, whose
feasibility is never tested, serves as a starting point for later processing.
At the time INITASGN is called the targets are ordered by increasing

values of launch azimuth., The data used by INITASGN to assign the targets
are contained in common /CONTROL/ and are as follows:

NV - Number of boosters

NARV - Ratio of number of targets input (NT in /RAIDATA/)
to the number of boosters (truncated to largest integer
less than or equal to value.)

NEXTRA- Number of boosters which must carry one more RV than the
average number (NEXTRA = NT - (NARV*NV)).

After INITASGN assigns the targets, NEXTRA boosters will be assigned NARV
+ 1 targets and the remaining boosters (NV-NEXTRA) will be assigned NARV
targets. (The first NEXTRA boosters in order of increasing azimuth will
each be assigned the extra target.)

The assignment method is straightforward manipulation of the RAIDATA list
pointers, IFOR, IBACK, IBOOST, and NTE. 1In addition the number of targets
currently assigned, NASGN, and the sum of the relative values (RVAL) of
the targets currently assigned, VALASGN, are incremented as each target is
added to the initial assignment. The targets are assigned in serial order
to each booster.

Subroutine INITASGN is illustrated in figure 99,
554

S L T WL S et 2t T TREY 2 e Y - ’ ik M s s ——————

oo, st

START

10,20
Clear Assignment

g Arrays In /2/
And /RAIDATA/

| v
3 ’ Done (.)
i' Do Fur Each RETURN

Booster 200

: AlDG
Increment Target
Pointer (IP)

!

Assign This Target As
First Target On Booster

X
1 * No

Do For Second Done Are There Extra
100 To NARV Re-entry s Vehicles To Be
Vehicles Assigned?
+Do
110
) Increment Decrement Number
: Target Pointer Of Extra Vehicles
(1p) To Be Assigned
‘ (NEXTRA)
Assign This *
- Target As Next Increment Target
Target On Booster Pointer (IP)

!

| Assign This Target
' To Bocster As | — :
Last Target 3

Fig. 99. Subroutine INITASGN

555

SUBROUTINE INPOT

: PURPOSE: This routine adds and deletes targets from the
; potential target arrays.
h ENTRY POINTS: INPOT, OQUTPOT
é FORMAL PARAMETERS: None
i COMMON BLOCKS: RAIDATA, 4, CONTROL, INDEX, POTENT, WPNTGT, 1, 2,
} 3, DEBUG, PRINT '
5 SUBROUTINES CALLED: GOPRINT, REMOVE
CALLED BY: sOOSTIN, OPTBOOST
Method

Entry INPOT removes a target fiom the RAIDATA lists and enters it in the
potential target arrays. If the target is currently assigned to a booster,
subroutine REMOVE is called to remove the assignment. [Intry OUTPQT

removes a target from the potential target arrays and returns it to the
RAIDATA list in an unassigned state. (Subroutine BOOSTOUT is used to
remove targets that are assigned to a booster.) The data which controls
this subroutine are contained in common /INDEX/ as follows:

JINR - RAIDATA index of target to be entered into potential
target arrays

JOUTP - Potential target index of target to be removed from
potential target arrays.

During processing, the following indices in common /INDEX/ are also defined:

JINP - Potential target index for target entering potential 5
arrays (=IFREE (NFREE))

JOUTR - RAIDATA index of target to be removed (=IPOT (JOUTP)).

To save time in processing by reducing the number of references to variables !
in common storage, the following substitutions are made for these indices:

JR = JINR (in INPOT)

556

L L Ll o LN s re el tmeas st e s eced mememte 2 & s ALk imae et R BT TG i Sehubei it J

\
!
\
JR
Jp
Jp

The processing of this subroutine is very straightforward, as displayed

in figurﬁ 100,

i
!
I
\
1
I

JOUTR (in OUTPOT)
\ 1

JINP (in INPOT)

JOUTP (in OUTPOT)

\

557

\

110

; Save Target
; Index

100

8 ves

Is This
Look-Ahead
Option?

Call REMOVE

Entry OUTPOT)

START

———

0y

sTART) En

IN

try
POT

Find Next Available

Cell And Decrement

Number Of Available
Cells By One

9599

Assigned
to Booster

Pot
Li

Target Status?

Set Indices

To Remove | f——————p» TOTAdg za;%et

Assi t o En
ssignmen osond of

Already in

ential 9000
5t

Print Error
Message

Load Targét Data
Intuv Potential List

Computation Arrays

Determine /RALDATA/

Index

f 1s {arget
In Potential
List?

300

Determine List
Position Of Target

Fig. 100.

Reset Miss List
\ Indices To
Remove Target

Reset Tlarget
Data In
Potential List '
Computr~tion Arrays

558

Subroutine INPOT

R P o B TP

PURPOSE

ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBROUTINE LOADREAD
This routine reads and prints booster loading
data.
LOADREAD, PRNTLOAD
None
None
None

GOPRINT (PRNTLOAD), RDCARDF (LOADREAD)

This subroutine is currently a dummy routine. Its purpose will be to read
data on variable boouster loadings within a group and also to print that
data. The dummy routine merely reserves the entry points for later ex-
pansion of the program to include a variable booster loading option,

(LOADOPT = *VARY* =

option 2)

559

SUBROUTINE LREORDER

PURPOSE: This routine reorders the elements of a packed
logical array.

ENTRY POINTS: LREORDER

FORMAL PARAMETERS: ISEQ =~ A sequence array to control reordering
N - Number of elements to be reordered

LOGAR - A logical array to be reordered

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT, NEWCOOR
Method

This subroutine uses the same method as the utility subroutine REORDER.
This extra routine is required for logical arrays on the CDC 3800 com-
puter system. Logical arrays are packed 32 elements to one computer word
on this system and the word manipulation code of subroutine REORDER would
not correctly reorder a packed array.

The ISEQ array is a sequence key array of the type produced by subroutine
ORDER. It contains the indices of the array LOGAR in the order in which
they are placed. That is, ISEQ{1) contains the index of the element in
LOGAR that is to be placed first, ISEQ(2) contains the index of the
element that is to be placed second, and so on. The parameter N deter-
mines the number of elements to be reordered. At the end of the sub-
routine, the elements of LOGAR have been reordered.

LREORDER stores one element from LOGAR in a temporary location. It then
reads from ISEQ the element which should go in that position (which may
now be considered empty) and moves it, filling the position and creating
a new empty cell. Each new empty cell is filled with its proper contents
as soon as the original contents have been removed. When the element in
temporary storage is required, LREORDER finds another clement which is
not already in proper sequence, puts it into temporary storage, and con-
tinues as before, This process continues until no elements are out of
sequance. The contents of ISEQ are returned to the calling program un-
changed so that the sequence key can be used again.

Subroutine LREORDER is illustrated in figure 101.
560

bt e e e —

10

Initialize Cell

Pointer, 1 80
Increment Cell
20 k Pointer (1)

Is This Ceil In The
Correct Sequence?

30 —{No No
Hias This Cell Been 1s This Last Cell
Previously Filled? To Investigate?

No "
40 ‘ Yes
Save Cell Pointer
(ITEMP) Do For All
And Logical Value Entries In
Sequence
50 * Array
Get Next Position o
‘ » To Be Loaded (NEXT) 100 ‘
‘ Retuvn Entry
To Original
Flag Current Position vVaiue

As Previously Filled

Y

Fill Current
Position

v

Set Current Position
Pointer (I) To
Next Position (NEXT)

No /Is Current Position(1
The Saved Position
(ITEMP)?
Yes
60

Flag Current Position
As Previously Filled

Y

Fill Current Position
—— (1)
With Saved Value

Fig. 101. Subroutine LREORDER

561

Done
RETURN)

SUBROUTINE NEWCOOR

PURPQSE : This routine converts target coordinates from
latitude and longitude to range and azimuth from
weapon group centroid.

ENTRY POINTS: NEWCOOR
FORMAL PARAMETERS: IG - Group Number
COMMON BLOCKS: FILES, WPNCRPX, RAIDATA, 4, EARTH, 2, DEBUG, PRINT,

TSCRATCH, Filehandler Blocks (ITP, MYIDENT, TWORD,
NOPRINT, FILABEL)

SUBROUTINES CALLED: GOPRINT, ORDER, REORDER, LREORDER, WRARRAY, DISTF
CALLED BY: FOOTPRNT
Method

This routine converts the target coordinates for use by the footprint
generation subroutines. It is called once for each group.

For each target, NEWCOOR adds the target point offsets (DLAT, DLONG)

to the target coordinate (TGTLAT, TGTLONG). The range from the weapon
group centroid to the target point (RANGE) is then computed by a call
on the distance function, DISTF. The position of the group centroid is
given by the variables WLAT and WLONG in common /WPNGRPX/. The formal
parameter IG is used to retrieve the correct position.

The calculation of the launch azimuth uses spherical trigonometry. First
all the latitudes are converted to radians by the factor DEGTORAD in
common /EARTH/. The range is normalized by dividing by the radius of

the earth (RADIUS in common /EARTH/).

The computation of the launch range is performed as follows. Define a
spherical triangle with vertices at the group centroid, North Pole and
target. (See figure 102.) Let angle A (the launch azimuth) be the angle
between the line connecting the centroid and the North Pole and the line
connecting the centroid and the target. Measure the distances between
the points in terms of the number of radians subtended by the connecting
lines., 1If distance a is the distance between target and North Pole, b

is the distance between centroid and target, and c is the distance
between centroid and North Pole, then:

562

N Lon el e

4]
[H

™/2 - (TGTLAT*DEGTORAD) :

i1

" X

RANGE/RADIUS

¢ = T/2 - (WLAT*DEGTORAD)
A b
Using the law of cosines for spherical triangles, then:
cos a - (cos b . cos ¢
cos A=T5In b . sin ¢
The difference between the target longitude and the centroid longitude
is then used to determine the sign of the Jaunch azimuth.
After all launch azimuths have been computed, the target data are reordered
according to increasing value of launch azimuth. The sequence array used
for this rcordering is written on the assignment data scratch file, ISCR,
for later use.
Subroutine NEWCOOR is illustrated in figure 103.
North Pole
Target
4 Centroid
|
Fig, 102, Calculation of Launch Azimuth 2
503 i

AE2-h 0 T -

\.i
. : Lt s T W & ML S g

e TR T T v ety e T

T TER STy T—

Lidani Sl

START

Calculate Longitude
Limits Of temisphere Of
Which Target Longitude
Is Mid Point

100

'

Do

Add Target Offsets
To locution

Y

Do For Lach _Egne

[[et Target

Call DISTF
To Compute Range
From Centroid To Target

Y

Determine Number Of
Radians Subtended By Each
Sidr. Of Spherical Triangle

R S .. e e ol

legf————d Set Azimuth Negative

Y

Compute Cesine
Of Azimuth

(Is Magnitude of Cosine

Greater Than 1.0?

No
4

Call ACOSF Tw

Of Azimuth

!

Does Trajectory
Pass To Left Of
North Pole?

Yes
oy

Compute Value | peb——————

Call ORDER To
Determine Order Of
Targets By Increasing

Azimuth

:

Write Sequence
Array On Assipgnment
Data Scratch File

!

=(eal

Call REORDER To
Recorder Target Data
Arrays According
To Azimuth

!

Call LREORDER To
Reorder Fixed
Missile Indicator
By Azimuth

Yes i

2

Set Cosine
To 1.0

Fig. 103. Subroutine NEWCOOR

564

T

e e ma

SUBROQUTINE OPTBOOST

PURPOSE: This routine generates the basic footprint(s) for
each booster.

ENTRY POINTS: OPTBOOST

FORMAL PARAMETERS: None

COMMON_ BLOCKS: STRKSUM, RAIDATA, 4, CONTROL, FOOTIO, FOOTSAVE,

INDEX, LOADATA, PARAMETR, POTENT, WPNTGT, 1, 2,
3, DEBUG, PRINT

SUBROUTINES CALLED: GOPRINT, HITIT, TEST, MISSIT, EVAL, REVAL, IMPROVE,
ORDER, INPOT, ADDRV

QQLLED BY: FOOTPRNT

Method

This subroutine generates the footprint assignment for each booster. The
routine creates the footprint by an incremental method. That is, targets
are added to the footprint until either the booster is carrying a full
load or no more targets can be added without viclating the fuel con-
straints. Subroutine IMPROVE is then called to investigate possible
improvements,

The primary user-input parameters which affect processing in OPTBOOST are
MAXFOOT and FRACLOOK, The former controls the degree of effort to be
expended by OPTBOOST in footprint generation. The subroutine will generate
up to two separate footprints from the potential target list. The better
footprint will be selecved for improvement and later processing. The
absolute value of MAXFOOT determines the number of footprints generated.
(MAXFOCT must be -2, -1, +1, or +2.) The smaller absolute value saves
processing time but limits the number of distinct footprints generated.
The sign of MAXFOOT determines the use of the 'look-ahead" feature., If
MAXFOCT is negative, no targets are added to the potential list after
subroutine BOOSTIN. If the variable is positive, OPTBOOST retrieves tar-
gets from the RAIDATA list and has them entered into the potential list.
The targets to be retrieved are those assigned to the next booster to be
processed. This look-ahead feature allows the consideration of targets
with similar launch azimuths which are assigned to a later booster. The
number of targets entered is controlled by FRACLOOK. This variable is the
fraction of the next booster assignment which is entered.

565

DR SR PP B i il Al decat P

The subroutine can be divided into five parts as shown in
figure 104,

Part I: Determination of Best Initial Point

This part determines the best starting point for each footprint. It begins
by ordering the target potential indices by decreasing value of worth (VAL).
An index, JONE, is kept to point to the target currently under considera-
tion as the initial point., The targets are considered in order of de-
creasing worth. The routine evaluates the feasibility of each target

until a feasible target is obtained. If no feasible target can be found
(and the first footprint for the booster is being processed) the routine
exits after printing an error message. When the best initial point is
found, the distance and value matrices are recomputed by subroutine REVAL.
OPTBOOST then redeterminss the order of targets by decreasing worth.

Part II: Addition of Targets

This part is the heart of subroutine OPTBOOST. It attempts to add as
many targets as possible within the fuel constraints. The processing
operates as follows:

1. Retrieve index to next target

2. If all unassigned targets have been investigated, go to im-
provement section

3. Test feasibility of adding this target
4, If infeasible, return to step 1

5. Reevaluate matrices and reorder unassigned target indices
according to decreasing worth

6. Return to step 1 unless booster is carrying maximum load.

The improvement phase follows the addition phase. Subroutine IMPROVE
is called to determine the benefits of minor changes in the footprint.

Part IIT: Selection of Best Footprint

According to the absolute value of MAXFOOT, either one or two distinct
footprints are generated from the potential list. The two footprints
are distinct in that no target is assigned to both footprints. The
processing in this part involves saving and retrieving the indices of

5656

8 P

kA

the targets in the footprints. A second footprint is considered only if
the number of unassigned targets in the potential list is not less than
the number of targets in the first footprint. Only then can the second
footprint be an impruvement over the first,

After both footprints have been generated, the routine determines the
better one. This decision is made by selecting the footprint with the
greater number of targets. If both footprints have the same number of
targets, the routine selects the one with a higher sum of target values
(RVAL) .

During this phase, the target indices are stored in temporary storage.
Array IFOTSAVE in common /FOOTSAVE/ is used for indices for the first
footprint., Array IF2SAVE in the same block is used for the second foot-
print,

After sclection of the best footprint the routine checks the sign of
MAXFOOT. If positive, the look-ahead feature is implemented.

Part IV: Look-Ahead to Next Booster Assignment

This feature allows OPTBOOST to consider targets assigned to the next

booster to be processed. On the first pass, thesz are the targets with
the launch azimuths next larger than those in the current footprint. In
the second pass, these are the targets with next smaller launch azimuth,

In order that targets added on look-ahead not be immediately removed by
subroutine BOOSTIN before processing the next booster, the save indicator,
JSAVOPT, is set to 1 before the targets are entered into the potential
list. This indicator directs subroutine INPOT to place these target in-
dices i1nto the JSAVE array in common /INDEX/. BOOSTIN will not remove
targets whose indices are in the JSAVE array.

The number of targets added is determined by the user input, FRACLOOK,
which is the fraction of the next booster to be added. In any case, the
number added cannot exceed either the total assignment to the next booster,
or the number of available cells in the potential target arrays.

After the targets are entered, the distance and value matrices are com-
pletely recomputed so that all data for the new targets are added. The
target indices are reordered according to decreasing worth, and control
returns to Part IT, Addition of Targets.

Part V: Termination

There are two parts to this section. The first retests footprint 1

feasibility. Processing by IMPROVE may cause the target sequence to be
jumbled. If this perturbation affects feasibility, an error message is
printed at this point, but processing continues. The second part tests
for fullillment of the minimum load constraint, If the free load option
(LOADOPT = 0) is not in effect and the assignment has not met the minimum

load, subroutine ADDRV is called to increase the number of re-entry vehicles
assigned to the booster.

i

START

9000

Any
Unassigned
Targets?

Print Error
Message

10
Order Target Indices
By Decrecasing Worth

!

Initialize Investiga-
tion Index(JONE} To O

30

o Increment Investiga-
tion Index

!

Retrieve Target Index
And Add To Footprint

Set Error
Indicator

60
Call REVAL To
Reevaluate
Feasible?)._1o5 4, Distance Matrix
ort
Parameters

65

Order Target
» Indices By
Decreasing

Worth

No

40

Remove Target
From Footprint

More
Unassigned
Targets?

51

First
Footprint For
Booster?

Print Error
Message

Set Error
Indicator .

Fig. 104, Subroutine OPTBOOST

Part I: Determination of Best

initial Point

569

. Increment Investigation
| 'y > Index (JADD)

More
Unassigned
Targets?

No h

80

. Retrieve Target Index
g And Position Index

| ——

Add Target To Foot-
print And Test

Foasibility

120
Remove
) - Target Feasible?
: From
3 Footprint

120,140,150 § Y°5

Reevaluate Worth 170,
(And Distance Which
Matrix If l—' Footprint?
Necessary) d

<2

1' 160 * =
g Initialize Investigation
Index And Order Call IMPROVE To

Target Indices By Improve Footprint
Decreasing Worth

e No / Booster At Yes

Maximum Load?

180

Which
Footprint?

PPN S A

Fig. 104. (cont,)
Part II: Addition of Targets

570

e i

Increment Footprint
Number

230

No / Another Footprin

No

Yes

A

330, 340 ; Yes

More Targets In
First Footprint?

Move All Sccond
Footprint Targets lek
To Miss List

350 ¥

Return All First
Footprint Targets
To Hit List

More Fargets In
Second rootprlnty

Call TEST and REVAL
To Reestablish Value
And Distunce Matrices

Be Better?
210 y ves

Calculate Sum Of
Values Of Targets

t
N\ Requested? Aj>

/ Can Seoond Footprin}>

Call LVAL To
Evaluate Target

Worth

|]

In First Footprint

Save [ndices Of
Targets In

310

First Footprint

22

312

Calculate Sum Of

Target Values In
Second Footprint

y

No Is Second Foot- ¢S
print More Valuable?

260 ¢ Yes

Is Booster At
Maximum Load?,

Fig. 104.

Part III:

No
370
- Incremen: Footprint
Numher

Lock-
Ahead?

(cont.) ' \ -
Selection 'of Best Footprint

571

Save Indices Of
Targets In
Sccond Footprint

"’ ".

Return Targets In
First Footprint To
fiit List

355 ‘

Move All First
Footprint Targets
To Miss List

356 \

Return Second
Footprint Targets
To Hit List

1

e ol

¢ i i T = T T

422

380

|

Are Any Tarpgets No)
Assigned To Footprint?

385 ;Y" #

Set Target Index Save
[ndicator (JsAvorl)
For Subroutine [R10T

390 ‘

Nletermine Index Of
Next Rooster To
Be Procussed (NBNEW)

Mo

"Booster Index

No

Within R(IHI:Y /

oy |
205) '\Ls. !

Load RATDATA Indices
Of Targets In Next
Bovster Assignment

Into FUTSAVE Array

y

Are There Any RVs \No
In Next Assignment?

420 ¥ Vos

Reset tnvestigative Index
and Order Tarpets By
decreasing Worth

Call orRDER To
Determine drder Of Targets
., By
Increasing Launch Arimuth

440 ’

Call REVAL Ty
Reevaluate Distance

h

Invert Order
Of Tarpet

Indices

F‘ Yes / Second
— (Pass?

No
426]

And Worth Arvavs

430 j

Add To Potential List Those
Targets With Azimuth Closest
Ta That Of Current Bouster

.,

betermne Number Of Targers
To Be Added Un Look =Ahead

N

Fig. 104.. (cont.)
Cart 1V:

4

Look-Ahead to Next

Booster Assignment

572

HE - S T

Y99Y

Call TEST To
Test Feasibility Of
Current Footprint

¥ EES
5 A T
§

]

A

i

E

|

;

Feasible?

9996

Request Print

Print Lrro
Message

/

¢

Set Error

On Option

'

Reset Lrror
Indicator

'

{

Has Footprint Met
MINLOAD Constraint
If Required?

Yes
9995

—s | To Add RVs

Indicator

9994

No Call ADDRV

To Footpriat

Fig. 104. (cont.)
Part V.

Termination

SUBROUTINE PRINTSET

PURPOSE: This routine controls activation of print requests, k
? ENTRY POINTS: PRINTSET
| FORMAL PARAMETERS: None i
i COMMON BLOCKS: STRKSUM, CONTROL, WPNTGT, FLAG j
f SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT

Method

This subroutine is called once for each booster on each pass for each
: group. It sets flags (array IFLAG in common /FLAG/) which control the
] printing by subroutine GOPRINT.

The routine first sets all flags to false (zero) for no print requested.
The print requests read by subroutine RDCARDF are then examined to deter-
mine which requests are active for the current booster, pass, and group.
Each active request sets its flag to true (one) which will cause a print
to be generated. 1If print request 14 (subroutine call chain for all
subroutines) is activated, flags 16 through 35 inclusive are set true
since these requests arc the call chains for each individual subroutine.
See subroutine RDCARDF for a discussion of the nature of the print
requests.

i Subroutine PRINTSET is illustrated in figure 105,

574

e

o

START

1

Do For Each JEL___., Set Flag

Print Request Value To

Flag ad— False
‘ Done
Do For Each

4 Done N
0 Print Request Is ;l:g,l =
Input bl 60

50

+ Do Yes (reTury

Is Gyogp Greater 55 1o for Flags *
Than Minimum Group Or 15 Through 35—
Is There No Minimum? M £

‘Yes {Do

N Is Group Less
Than Maximum Group Or Is Set Flag

P

K

There No Maximum? True

+ Yes

Is Pass Greater
Than Minimum Pass Or
Is There No Minimum?

‘Yes
15

N Is Pass Less
Than Maximum Pass Or Is

r

a
—
Ao

There No Maximum?

Yes
20
N Is Booster (Greater
Than Minimum Booster Or
Is There No Minimum?
Yes
s Y
Is Booster Less
Than Maximum Booster Or Is
There No Maximum?
Yes
30

Set Flag For This
Request To True

Je

P

Joz\

Fig. 105. Subroutine PRINTSET

575

k
4
i
!

B R oy

T WA TN TR Y Y w .

PURPOSE:
ENTRY POINTS:

FORMAL PARAMETERS:

COMMON BLOCKS:

SUBROUTINES CALLED:

CALLED BY:

Method

SUBRQUTINE PRNTREQ

This routine prints the print requests.
PRNTREQ

None

FLAG

None

RDCARDF

This subroutine is called by RDCARDF to display the print requests in

common /FLAG/.

Table 29 shows the format of the print requests. If any of the last six
variables in the table are blank or zero, no checking is done on that

parameter.

The meaning cf each print request is explained in the User's Manual,
Volume II, Chapter 3, Plan Generation Subsystem, Program FOOTPRNT, Output,

Subroutine PRNTREQ is illustrated in figure 106.

576

TR e

M

-

I

USER-INPUT
PARAMETER

NAME

PRINT
NOPRINT
GSTARTP
PASSTART
BOOSTART
GENDP
PASSEND

BOOSTEND

Tabie 29.

INTERNAL
VARIABLE

NAME

IPRNT

IFG
IFP

IFB

ILP

ILB

Format for Print Requests

DESCRIPTION

Print request number

Default request to be removed
First group to activate print
First pass to activate print
First booster to activate print
Last group to activate print
Last pass to activate print

Last booster to activate print

Sl S

Print
Heading

3 Do For Each (Dene
" Print Request » RETURN
: ¢Do

Print Values
Of Variables
In /FLAG/ For
This Request

i aattiaieti

Fig. 106. Subroutine PRNTREQ

578

SUBROUTINE RDCARDF

PURPOSE: This routine reads and interprets the user-input
parameter cards for the assignment module.

ENTRY POQINTS: RDCARDF

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, CONTROL, FLAG, LOADATA

SUBRQUT INES CALLED: GETVALYU, ITLE, NUMGET, PRNTREQ, TABLINPT, LOADREAD

CALLED BY: FOOTPRNT

Method

The user-input parameter cards are in the QUICK free field format des-
cribed in utility subroutine GETVALU. This utility routine is used to
generate variable name-value pairs for the user-input parameters. The
user-input parameters are the print requests and the algorithm control
variables. The user-input parameters for print requests are displayed
in table 29. The print modifying parameters, GSTARTP, GENDP, PASSTART,
PASSEND, BOOSTART, and BOOSTEND, modify the immediately preceding print
request (PRINT) on the same card. That is, a print request and its
modifiers must be contained on one card. In order to remove a default
print request, the parameter NOPRINT is used to specify the request,

The program control variables are IGSTART, IGEND, LOADOPT, MAXFOOT,
FRACLOOK, DELAGE, PN, PURGE, and IDUMP.

The first two of these are used to determine the beginning and ending of
processing for program FOOTPRNT. The first parameter, IGSTART, specifies
the first group for which program FOOTPRNT will look on the TMPALOC file.
The latter parameter, IGEND, determines the last group that the program
will consider on that same file. These parameters arc used when the user
wants the program to process only a subset of the total number of groups
output by program ALOCOUT.

The next parameter, LOADOPT, is used to determine the booster loading
option that the user desires for processing. When its value is FREE*,

*The values listed for parameter LOADOPT are the input parameter values,
Subroutine RDCARDF changes these internally as follows: ADDON to 1;
MINLDREQ to 3; FREL (or otherwise) to 0.

579

462 546 O - T2 L0

the program will consider only a maximum load constraint on each individ-
ual booster. That is, any loading of re-ontry vehicles to the booster
that does not exceed a specified maximum load will be deemed acceptable
by the program. A value of ADDON* for this parameter will cause the
program to attempt also to meet a minimal load constraint for each
booster. If the potential assignment for a booster requires a number of
re-entry vehicles that is less than the minimum load, the program will
attempt to utilize more rc-entry vehicles on the booster by placing extra
re-entry vehicles on targets alrecady included in the footprint. This
operation continues until the minimum load constraint has been met. If
the program determines it is unable to use enough extra re-entry vehicles
on the hooster to mecet the minimum load constraint, then the booster
assignment is output without meeting that constraint. If the value of
the parameter LOADOPT is equal to MINLDREQ*, then the program will not
output a booster assignment with less than the minimum load. If the
program is unable to assign a footprint to a booster with the minimum
required number of re-entry vehicles, then no assignmeni at all will be
the output for that booster. In all cases, the program will abide by

the maximum load constraint,

The next parameter, MAXFOOT, controls the amount of effort expended in
subroutine OPTBOOST in generating a footprint for each booster. If the
value of this parameter is negative, there will be no "look-ahead" to
later beosters to determine if targets previously assigned can possibly
be added to the current footprint. If the parameter is positive, the
fraction, FRACLOOK, of the targets assigned to the next booster to be
processed is added to the potential target arrays during OPTBOOST pro-
cessing. This look-ahend feature enables the subroutine to consider
targets which might be assigned to a later booster but can profitably

be added to the current one. The absolute value of this parameter,
MAXFOOT, determines the number of separate footprints which are generated
from the potential target arrays by subroutine OPTBOOST. If MAXFOOT is
equal to + 1, then only onc footprint will be generated from these arrays.
I[f MAXFOOT is equal to # 2 (which is the maximum absolute value that can
be assigned this parameter) then two separate footprints arc gencrated
from the potential target arrays. The program then selects for further
processing the footprint with either the greater number or greater value
of targets assigned. 1If more than one footprint is desired from any
potential target array set, the program produces two footprints which
sharc no targets. The next parameter, FRACLOOK, is the fraction of the
target assignments tfor the next booster to be processed that will be
added to the potential target arrays during the iook-ahead function of
subroutine OPTBOOST. (The value of this parameter should not cxceed one.)

Two of the remaining parameters on the control card deal with the deletion
of weapons from the potential target list. The first, DELAGE, is a factor

*The values listed for parawcter LOADOPT are the input parameter values.
Subroutine RDCARDF changes these internally as follows: ADDON to 1;
MINLDREQ to 3; FREE (or otherwise) to 0.

580

which multiplies the variable AGE as each booster is processed. This
variable, AGE, is used to divide the2 nominal worth of maintaining a
target in the potential target arrays. As the AGE of a target increases,
it becomes less and less valuable for retention in the potential target
arrays. AGE is modified as each booster is processed by multiplication
by the factor DELAGE. As DELAGE increases, targets will remain in the
potential target arrays for fewer boosters. (The value of DELAGE should
always be greater than one.) i other variable which controls the deletion
of weapons from the potential target arrays is PURGE. This parameter is
the fraction of the targets in the potential target arrays that are to

be removed at the end of the processing for each booster. Subroutine
BOOSTIN removes this fraction of the potential target arrays bcfore
adding the targets which are assigned to the next booster to be processed.
1f, however, the number of targets in the potentjal target arrays is less
than the average booster load, then no targets are removed. This feature
prevents an excessive value for the parameter PURGE from eliminating all
targets from the potential arrays except those which are in the previous
assignment. PURGE however should not be set too small, since the pro-
cessing time for the program is greatly affected by the number of targets
in the potential target arrays. As this number increases, processing
time increases according to the square of the number of targets in the
potential target arrays.

The factor PN is a weighting factor for the value line used in the function
VALF. As the value of PN increases, the value scheme gives more weight to
targets with many close neighbors. (That is, targets with many close
neighbors are deemed more worthy to be included in the current footprint.)
The specific function of this parameter is to determine the fraction of
the length from the minimum load (MINLOAD) to the number of average
targets per booster (NARV) which becomes the Y intercept of the value
control lines. This value control line is a straight line whose Y inter-
cept is determined by PN and whose X intercept is the maximum load value
(MAXLOAD). This line determines the input weighting factor to the
function VALF. The parameter IDUMP is used to abort the run with a

memory dump following the print.

After reading and printing the values of the user-input parameters, the
subroutine calls subroutine TABLINPT to read the footprint parameter

tables. These tables comprise the footprint constraints which are to be
imposed by this program. The format for these data is discussed in the
section covering subroutine TABLINPT. If the loading option is different
from the free load option (i.e.,, LOADOPT#0)*, then subroutine LOADREAD is
called to rcad any data on booster loadings that are requircd. (At prescnt,
no further data are required and subroutine LOADREAD would return without
reading any further data cards. This subroutine is merely included to
provide for expansion to other booster loading options.)

Subroutine RDCARDF is illustrated in figure 107.

*Input value=FREE

T n i e s ST e,

Set Up Default

. Valucs for User-
" Input Parameters
I3 } ro 0
B Do For All Fossible Clear f'rint
- Print Requests - Mty Arsays

}l‘onc

1

L Do For Fach o Set hata
L Default Print For Default
! Request -t Request

‘ lione)
: 100
] Read Next Users Yee Are There More No

Input Parameter User-Input Parameter 2000,

\ Cayd Cards?

} 110 fl}ane

\ 4

Print User Do For Each
Input Parameter Paranerer On @ |
Card b Card
L ‘ Do

Call GETVALU To Save Name
!‘. Break Down Input And location
F To Parameter-Value {
3 Fairs
3

Cyll ITLE To
Deternine If
Name Matches
A Purameter

‘ 50

Weye There Any
User<Input Parumeters
On Card?

Is Parameter An \ yes $et Mode
Algorithm Control Of Parameter s
) Parameter ? To INPUT

120 No 151.152.153;

Ts Parameter A Set Value OF

Print Request? Parameter To
Input Value
Accoyding To

Paramcter Format

Print Error
Message

[P Vo

Fig. 107. Subroutine RDCARDF '
Part I: Initialization and Processing
of Algorithm Control Parameters

. Pt
Request

, Call NUMGET To
f Determing Option
Number

Is Option No
; Number Positive?
: ‘ Yes
; 210

Increment Number
0Of Print Requests

+ Decrement
Is There Room For No Print Error Number Of
This Request? Message Print

Requests
218 ‘ Yes
Set Option Switch
And Mode Print
Cancellation \ 300 k
220 +
Inerement Index
‘ To Parameter Call NUMGET To
Determine Option
Number
Is There A Parameter
In This location? 1000 ,} ;
230 * Yes 240 tall ITLE To
Does Parameter No Decrement Bcgerm%:?-chuqst
Modify The Print Index To sing This Optien .
Request? Parametey '
250 7;>ch Is Ther A Request
g wre Y
P Set Value Of _< For This 0pt10n>
Modifying Teos
Parameter { 3lo ‘
Remave |
Request '

Fig. 107. (cont.)
Part II: Print Request and
Cancellation Processing

583

. - . . s ot e miiain e N R R T T

'
§
: @
n

N Print
; tieading

Call PRNTREQ To
Print Requests
For Prints

7

Load User Input
Algorithm Control

Parameters
2100
o
Do For Each Pript Parameter
1 Algorithm Control Name, Value,
3 Parvameter Ad Setting Mode

* Done . ;F
Call "TABLINPT To >
Read User-Tnput
Footprint Parameter

: Tables

q

\ 2300

Ts Booster Loading\ 'eS
Option FREE?

No .4
2200 5
L Call LOADREAD To
Read Necessary

Boester Loading
Tables

2
Fig, 107. (cont.) !
Part 1II: Termination Processing i

i

i

{

|

584 ;

)

A

\l
SUBKROUTINE RhyOVE
PURPOSH: : This Qoutine removes a target from its booster
assignment. .]
LNTRY PdINTS: } RIMOVE
FOKMAL PARAMETERS : None
COMMON BLOCKS : RAIDATA, 4, ﬁﬁRPORM, WPNTGT, 2, DEBUG, PRINT
SUBROUTINES CALLED: - GOPRINT
CALLED BY: FOOTPRNT, INPQT

N - ‘\ '
Method

This subroutine performs the list pointer manipulation required to recmove
a target from its booster assignment in the RAIDATA 1ist. The target
whose RAIDATA index is in the variable JTGTD in common /WPNTCT/ is
removed. The forward and backward pointers are recalculated, the number
of targets assigned (total and by Looster) is decremented, and the maxi-
mun index indicator (by booster) is updated if\ncccssury.

|

Subroutine REMOVE is illustrated in figure 108.

\ | | |

585 |

L e

. START

900

. 'rint Error Message
Is Target Currently No b .
Assigned To Booster? Anf set Error ——
ndicator.

100 Yes
"Reset Status, Forward
And Backwurd Pointers

v

Set Forward Pointer
On Preceding

Error

160 Target
v m————n——
Set Backward \) +

N

.Pointer On No /" Is This Last
iFollowing \Target On PRooster?
Target

Yes
170]
Is Current Azimuth
Greater Than Previous
Max inum?

Yes

_ 180,190
/ i Computs New
\\180 ; Maximum Azimuth

Set Backward Pointer
Of First Target

| On Booster Y

Decrement Performance 119 -
Parameters (NASGN, VALASGN) Reset Booster
\ Pointers
\ ‘ ' (NTB, I1B0OST)
! Was This Only s
} Target On Booster?
\ 130
120, T Thi ;ND T Yes ' Reset Booster
5 r.rs Pointers
< 4 >'""—-——-—ih
‘ Target On Booster? (NIB, IBOOST)
| -
f 150 No)

- et

Was This Target
Of Maximum Azimuth
IFor Nooster?

140 No

det Backward
Pointer On First
Target On Booster

1

999

RETUKN

L Fig. 108. Subroutinc REMOVE

|

Call For Prints .
And Reset
Error Indicator

e '*""*"'“‘"'“""ﬂ

PURPOSE : This routine retrieves (from the ITABL file) and

SUBROUTINE SETDATA

loads the correct footprint processing data into
the footprint test arrays for use by subroutines
FOOTEST and GOPRINT,

ENTRY POINTS: SETDATA
FORMAL PARAMETERS: I - A system identification number, IMIRV
COMMON BLOCKS: PARAMETER, FOOTDATA, SHRTDATA, PENADD, FILES,

TSCRATCH, Filehandler Blocks (ITP, MYIDENT,
TWORD, NOPRINT, FILABEL)

SUBROUTINES CALLED: ABORT, SKIP, SETREAD, RDARRAY, RDWORD, TERMIAPE

CALLED BY: FOOTPRNT, PRNTABLE

—————

Method

This routine merely moves data from the footprint parameter scratch

file, ITABL, to the footprint test arrays. (See table 30.) As subroutine
TABLINPT reads the footprint parameter data, it writes them on the ITABL
file,

SETDATA first retrieves the system MIYPE and IDATA from those arrays
in common /PARAMETR/, using the formal parameter I, as an index.

SETDATA then determines if the correct system data are already in the
footprint testing storage. If so, the routine exits., Otherwise the
ITABL file is searched for the correct data. (Table 31 shows the
format of this file.) If the data are not found, the filehandler will
abort the run. Upon finding the data, SETDATA transfers them to the
appropriate array as listed in table 30.

Subroutine SETDATA is illustrated in figure 109.

587

S M L e el L e e e e SRR e i e it el i NPT O S - P I A

Table 30. Footprint Parameter Data Transmission,

FOOTPRINT FOOTPRINT TESTING
: TESTING COMMON
- MTYPE SYSTEM ARRAY ARRAY LENGTIi BLOCK
: 1 Long -Range ISLD LLNGDAT /FOOTDATA/
2 Short -Range ISSD LSHTDAT /SHRTDAT/
f 3 Long-Range ISRFD /PENADD/
: With Pene- ISLD } LPENDAT /FOOTDATA/

tration Aids

Table 31. Format for Footprint Parameter:
Data Scratch File

Each unique system is output on the ITABL file in the following format:

VARIABLE LENGTH DESCRIPTION

1
MTYPE 1 MIRV system functional type

IDATA 1 MIRV system data set number 1
-4
"YLENGTH''* 1 Length of footprint parameter table ;
for this system
"TABLE'** LENGTH

Footprint parameter table

*For MTYPE=1, LENGTH is LLNGDAT; MI'YPE=2, LENGTH is LSHTDAT; MIYPE=3,
LENGTH is LPENDAT (see table 30).

**For MTYPE=1, TABLE is the ISLD array; MTYPE=2, TABLE is the ISSD array;
MTYPE=3, TABLE is the ISFRD and ISLD arrays (see table 50).

o met

588

ey

Is This System
Already o Core?

1100

Save Systen
IDATA

90000

START

Cnll SETREAD To

Initialize
ITARL File 11000
Detcrmine And Save Values e
Of MIYPE And TDATA Print
Error
MIYPE = 1 i Error Message
LONG
RANGE /" Go To System Processing
According To MIYPE MINPE = 3 ABORT
MIYPE = 2 1.ONG RANGE
SHORY ¢ PENETRATION
2000 RANGE 1000 AIDS
Ts This System\'2S s s System
Already In Corc) 10000 Alrecady In Core}
No No
2200 3200
Save System Yave System
1DATA IDATA
Read MTYPE
y From ITABL
Is It Positive?
Yes 90030 |
Does It Match \Yes Read IDATA 3
Requested MTYPE? From ITABL E

No

Skip Word
On ITABL

90020
Read Length

Of Table From

__1TABL

No/ Does It Match

Requested TDATA?

90040 K

y Read Length
Of Table From :
ITABL

1200,22¢0,

Cali SAIP To
Skip Ovexr Table
On ITABL

Read Table Into
Appropriate
Array In Core

Fig. 109, Subrouti

589

Call TERMTAPE
To Terminate
ITABL ti'e

~—-‘*{ RETURN)

ne SETDATA

Y A T TN T

g

SUBRQUTINE TABLINPT

PURPQSE : This routine reads and prints the footprint para-
meter tables, and saves them on the ITABL file.

ENTRY POINTS: TABLINPT, PRNTABLE

FORMAL PARAMETERS: None

COMMON BLOCKS: RAIDATA, 4, PARAMETR, FOOTDATA, SHRTDAT, PLNADD,

FILES, TSCRATCH, Filehandler Blocks (ITP, MYIDENT,
TWORD, NOPRINT, FILABEL)

SUBROUTINES CALLED: NUMGET, SETDATA, SETWRITE, WRARRAY, WRWORD,
TERMI'APE

CALLED BY: RDCARDF (TABLINPT), GOPRINT (PRNTABLE)

Method

This routine reads the footprint parameter tables and stores the data in
common block /PARAMETR/ and outputs the data on the footprint parameter
data scratch file, ITABL. Entry PRNTABLE calls subroutine SETDATA to
transfer the data from the ITABL file to the footprint testing parameter
arrays (in /FOOTDATA/, /SHRTDAT/, and /PENADD/) and then prints the data.
Common /RAIDATA/ is used as temporary scratch storage by this subroutine.
The local array IGOT is used to store the IMIRV numbers of those systems
whose parameters have been read. NGOT is the number of system data sets
that have been read.

Each MIRV system with a unique IMIRV number must be defined with a system
title card.* The data on this card are stored in common /PARAMETR/.
(See table 25 for definitions of the variables in this block.)

The data required for each data set depend on the system type number,
MTYPE. This variable defines the system to be long-range, short-range, or
long-range with penetration aids. (See table 25) Within each type, there
may be many different data sets identified by the data set number, IDATA.
(The values of this parameter need be unique only within each MIYPE value.
The values need not be consecutive,) As each data set is read, it is out-
put on the ITABL file according to the format shown in table 31. A data
set need he read only once regardless of the number of systems that use

it. If the values of MIYPE and IDATA read from a system title card ma:ch
values already read, then the routine merely reads the next title card.

*'or each value of the attribute IMIRV, there should be one title card.
The Hollerith name of the system (IHNAME in common /PARAMETR/) is used
only to identify the system in the print of the footprint parameter
tables. It has no 2ffect on footprint generation.

590

e ad M

i

Entry PRNTABLE retrieves the data for each defined system and prints the
data,

Fach fomnula's data cards are preceded by one system title card requesting
that tormula, The reading of data is terminated by a title card with a
zero or negative IMIRV value. The systems can be input in any order.

If more than one IMIRV value refers to a specific formula for footprint
test (see below), then the data for that fovmula must follow immediately
the first occurrence of a system title card requesting the use of that
formula. Succeeding title cards with the same formula definition nced no
data following them.

A formula for footprint testing is defined by two variables input on the
system titie card. The first, MIYPE, references the functional form of
the formula to be used. [f MIYPE = 1, the exponential functions of the
long-range system are used., MIYPE = 2 requests the short-range functions.
MIYPE = 3 requests the long-range system with a full load of area pene-
tration aids. Within each type, there are data sets for the parameters
used in the function. Thus, formula dcfinition requires MTYPE, the
functional form indicator, and IDATA, the index to the parameter set.

For example, if two long-range systems are desired there would be two
formula definitions: MIVPE = i, IDATA = 1; MTYPE =1, IDATA =2,

The formulae and data for both long-range and short-range systems have
been taken from "Strategic Offinsive Weapons Employment In The Time
Period About 1975 (U)'", (TOP SECRET) Weapons Systems Evaluation Group
Report, R-160, August 1969, Volume VI, Allocation of MIRV Systems.

Leng -Range System -- MIYPE=1

The long-range system can have either one, two, or three re-entry
vehicles on a booster.

The system functions are defined by a series of regression coefficients
which, when applied to these functions, produce results which fit the
actual physical characteristics of the MIRV system. These coefficients,
(e.g., RBASIC, RADD, etc.) have no names in the aforementioned document,
but since the form of the equations is the same in this program.and in
the document, a correspondence between the two is easily determined.

The system functions are as follows:

1. Fuel Load at Booster Separation (Pounds): Constant with number of
RVs.

2. Maximur Booster Range (RM in Nautical Miles):

RM = RBASIC + RADD * SINE(AZIMUTH)

591

e i ket

TN TN

RBASIC and RADD are function: of the number of RVs and the sign
of the azimuth,

i 3. Range Extension Consumption: number of Nautical miles traversed
: per pound of fuel

' NM/FUEL = RX + RAXX * SINE(AZIMUTH)

f RX and RAXX are functions of the number of RVs and the sign of
the azimuth,

i 4. RV Toss lquations: nautical miles per unit fuel

NM/FUGL = G * (TOSSCl + TOSSC2 * SINL(AZIMUTH))

: where

**TETWO

’ RM-R

i = 2 1 % N
: G = EXPF (TEONE <TDENOM))

E
where .

; RM = maximum booster range (nautical miles) i
' R = range to initial target {(nautical miles)

TOSSC1 and TOSSC2 arc functions of number of RVs originally

on board, number of RVs currently on board, and sign of launch
azimuth.

TEONE and TETWO are functions of number of RVs originally on
board and number currently on board.

5. Crossrange to Downrange Multiplier (CROSSDWN): :

CROSSDWN = G * (CONE + CTWO * SINE(AZIMUTH))

where]

1 **ETWO
RM-R

; - I Y = e s .

G = EXPF (EONE (DENOM))

CONE and CTWO are functions of the number of RVs currently on
board and the sign of the azimuth.

EONE and ETWO are functions of the number of RVs,

DENOM is a constant.

592

RTAELTT e T T,

Short-Range System -- MTYPE=2

This system does not consider launch azimuth. It considers configurations
containing from 1 to 16 RVs on board. The system functions are as
follows: (Let R be the distance in nautical miles from the launch base

to the initial target in the footprint.) The parameters for this type are
also coefficients calculated by a curve fit to observed physical data,

1. Fuel Load at Boostcr Separation:
2

TF = BETATWO * R® + BLTONE * R + BETAZ
The paramcters are functions of the number of RVs on board.

2. Maximun Booster Range: This is a parameter, MAXRBOOST, as a
function of the number of RVs carried to the first target.

3. RV Toss Consumption Lquations:

NM/unit fuel = ALPHATWO * R + ALPHAONE * R + ALPHAZ
Those parameters are functions of the number of RVs on board.

4. Crossrange to Downrange Multiplier:

CROSSDWN = GTWO * R® + GONE * R + GZERO
These parametcrs are constant.

5. Uprange to Downrange Multiplier:

UPDOWN = DONE * R + DZERO

These parameters are constant.

Long-~Range System With Penetration Aids: MTYPE=3

This system is similar to the long-range system (MTYPE=1). The equation
forms are the same except for the first set, fuel load at booster
separation. All the other constraints have the same functional form as
the previous type.

Calculation of the fuel load at booster separation is as follows:

la. Fuel Available for Footprinting: (FAFF in pounds)

FAFF = TGAS - SRF

L
[{e]
(7]

R it

Leagl

T T R T C L I P CIE N O P MOTTRELE T O wrpe A‘J

M TR T R AT R TR T—

TGAS ~ Total fuel load on board last state (pounds)

SRF - Fuel required to space and release penetration aids and
re-entry vehicles

1b. Spacing and Release Fuel: (SRF in pounds)

SRF = G * (SRFC1 + SRFC2 * SINE(AZIMUTH))

where
**SRFEXP2
{ RM-R
G + EXPF (SRFEXPI * (SRFDEN) >
where
RM

maximum booster range in nautical miles
range from launch base to first target in footprint.

R
TGAS and SRFDEN are constants.

SRFC1, 5RFC2, SRFEXP1, and SRFEXP2 all depend on the number
of RVs initially on board the booster.

Note: The long-range system with MTYPE=1l is a special case of this type.
For the former system, the spacing and release fuel is considered to de-

pend only on the number of RVs initially on board. Thus the detailed
computation of this fuel is unnecessary.

Subroutine TABLINPT is illustrated in figure 110,

594

ATV T AL T LA T

e o N Entry
LI <
START TABLINPT

Call SETWRITE 1o
Initialize
ITABL Rile

y

Set Nuober Of Systems
Reud To Zero

Road Next
System Title
Card--

Is IMIRV Value
Positive?

Yes

9999

No [Write Zerof - || Cail TERMTAPE
Word On To Terminate RETURN b
ITABL ITABL File

Y
Y

b Increment Number S
Of Systems Read ~..
’

1

Save System
Parameters

ITABI

o,

/

!

Write MTYPE And |

Do For Each Done IDATA On ITABL |
Previously 5 File i
{

]

'

'

|

]

Read System
L Do
/" Does MTYPE
Match?
Does IDATA
Match?
- ;

1000, 2000, 3000

Read Appropriate .
Table And Write Out L gl .
On ITABL File

Fig. 110, Subroutine TABLINPT
Part I: Entry TABLINPT

462-546 O - 72 - 11 595

ENTRY
PRNTABLE

Print
leading 3

20000 Do For Each Done o
* > System Input RETURN
‘Do z

Print System
Parameters From N
Title Card

'

Call SETDATA To
Retrieve Footprint
Paramcter Table

i o ;

1500,2500, 3500 ‘

Print Footprint
Parometer Tables

Fig. 110. (cont,)
Part II: Cntry PRNTABLE

SUBROUTINE TEST

PURPOSE : This routine sets up the test arrays in common
/FOOTIO/ for footprint testing.
. ENTRY POINTS: TEST
E FORMAL PARAMETERS: None
i‘ COMMON BLOCKS: FOOTIO, LOADATA, PARAMETR, POTLNT, 1, 3, DEBUG,
I PRINT
SUBROUTINES CALLED: GOPRINT, FOOTEST
E CALLED BY: CHKSEQ, TULLSAVE, IMPROVI:, OPTBOOST
Method

This subroutine is the interface between the assignment section of the
program and the testing section., It loads the RIN and THIN arrays in
common /FOOTIO/ from the data in the hit list (IMIT in /POTENT/) and the
temporary data arrays (RP and TP in /3/).

The only logical complication to this routine is the result of the
booster loading options that require that the minimum load constraint
must be met by every booster; i.e., LOADOPT23*. In this case, if

there are not enough targets in the hit list to meet the requirement,
subroutine TEST adds the needed RVs to the first target in the 1list.
Since it uses thec same method to add RVs as subroutine ADDRV, this
addition guarantees that no footprint will be declared feasible unless
it can contain at lecast the required minimum load. The number of RVs
added is stored in the local variable NOFFSET. This variable is used
to manipulate the data arrvays to show the correct entries for each real
target in the footprint. If the footprint with the added vehicles proves
feasible, one of the added vehicles is removed and FOOTEST is called
again. This second call is required to load the correct values in the
DELRAFT and TOFLY arrays.

Subroutine TEST is illustrated in figure 111,

*Input value=MINLDREQ

597

[TV S U VU PR S P S P

o
i
!
:
-

START

Set Number Of
RVs Added (NOFFSET)

! To 0 i

]

[‘: 20

'< Is Booster Londing D}::vt:rlmoir\,\cddl‘lurgrm:): ;

' Option MINLDREQ? Minimum Load ‘f

. No '

‘, - No /' Are Any Additional i

. Add Turget Do 40 - \ RVs Needed?

1\ Data To - Do For All Tarpets Yes

) FOOTIO 1D g In it List <1 :

" Arrays 5 Set NOFI'SET TO B

i v Number Added ;
Set Number Of T

] Targets To Be Tested Done Do For Added N
: ‘ "_i RVS ;

‘Du g
; Clear Feasibilit A
' Indicator Y Fill FQOTIO 4
Arrays With i
‘ Data Por First i
Target In :
Request Optional Prints Hit List
! s0
- Save Numbe: Of
C-‘;:;thgZEf’IiIZ 4 7| Feasible Targets
Feasibility ‘
‘ ‘..._<N° Werc Any RVs Added?)
Request Optional Prints Yes

No
‘ < Was Footprint Feasible? >->~
<Is Booster Loading >Yes 51 _‘Ye’
Tal) 3
Option MINLDREQ? Remove One Of

Ho The Added RVs
70

Lchucst Optionul Prlnts]-q——-—-
FOOTEST
59
) ” Restore Feasibllity L‘ounter.i‘y

And FOOTIO Arrays

Fig. 111. Subroutine TEST

598

TS PETLE T .

ST TR TR

T

SUBROUTINE TRANSFIR

PURPQSE : This rout?ne transfers blocks of Jata ﬁrom the \
TMPALOC file to the ALOCQRP file, .

ENTRY POINTS :! TRANSFER, INITRANS l

FORMAL PARAMETERS : N - See below \\ :

COMMON BLOCKS : RAIDATA, 4, DEBUG, PRINT, Filchandler Blocks |

(ITP, MYIDLNY', TWORD, NOPRINT, F1LABEL)
. \

SUBROUTINES CALLED: QUPRINT, RDARRAY, WKARRAY \

1

CALLED BY: FOOTPRNT 1 |

}
Method ! }

These two entries are used to transfer data from <he TMPALOC file to the 1-
ALOCGRP file. ' '

Entry INITRANS

The formal parameter N is the logical unit number of the file teo which
data are to Le transferred. This unit nidmber is saved in variable i
IWRITE, and control is returned to the calling program. ‘ i

Entry TRANSTER :
'\ | ., :

For this entry, the formal parameter N specifies the number of words of

data that are to be read from file ITP (or IREAD) and written on logical :
file number fWRITE. The words are merely transferred from one tape to

the other. TRANSFER assumes subroutine SETWRITE has been called for . .
\file IWRITE. . | : X’
Note: The length of common /RAIDATA/ from the beginning to LRAID is

stored in (RAID. Since TRANSFER uses this length in determining the

size of temporary storage, changes in common /RAIDATA/ should be .
reflected in this variahle. :

e e L i

Subroutine TRANSFER is illustrated in figure 112.

L Intry ' :

‘1 \ TRANSFER

?; '

! _ Save Read

i Unit \

| | ! ‘ |
: 20 30 _ i
- Read Words Write Words

From Read
Iile

On Write
File

g Will Num?cr Of \ yes
A Words Fit In: ,
i | N\ RAIDATA Block?

| No
J 40

Compute Number Of Times Restore Read

Block Must Be Filled (NTIMES) Unit N b“‘
: And Number Of Words Left . ' nit Rumber
) Over (NEX) ;
1 > g ! 9999
| oy !

Dn NTIMES | Words From /[:
2 ; Read TFile
*rm
1
! Read Words To

Fill /RAIDATA/
From Read File

\50 ‘

Write Words |
From /RAIDATA/ I Entry
To Write File STARI INITRANS

‘ Restore Read

) ore Save Write
S Unit : Unit Number
Number

Restore Read
Unit Number

\. ()
Fig. 112, Subroutine TRANSFELR
\ !

600

FUNCTTON UPTODOWN

} . PURPOSE This function computes the multiplier by which
; uprange distance must be multiplied to calculate
: » ecquivalent downrange distance.

; ENTRY POQINIS: UPTODOWN

[FORMAL PARAMETERS : 1 - System type - MIYPE

g R - Range to first target (nautical miles)
? AZ - Launch azimuth of booster {radians)

. N - Number of rc-entry vehicles carricd

: COMMON BLOCKS: FOOTDATA, SHRTDAT, PENADD

:! SUBROUTINES CALLED: Nonc

: CALLED BY: BOOSTIN, EVAL, FOOTEST

i S M P o 2

Method

This function computes the uprange -to-downruange distance multiplier for
use by the footprint testing subroutines. It uses the cquations displayed
in the discussion of subroutine TABLINPT. This function mercly uses a
computed GO TO statement to direct processing to the correct cquation,

The system type (formal parameter 1) determines which cquation is used.
The remaining formal purameters provide the data for the multiplier
calculation.

Function UPTODOWN is illustrated in figure 113.

601

S-SR ki

<
START
5 Long-Range 1000
f System Set Ratio To
: (With Or Without Large p—r. RETURN
; Penetration Value
Aids)?
Short-Range
System?
. Set Ratio To
Apply Footprint Large
] Parameter Table Value
- Formula Ema—
RETURN
RETURN g
i
i
Fig. 113. Function UPTODOWN i
i
!
602 :
4

. R R Y, A
. . - i P T TIE T IR TU ki st i e i ; chini ‘J

Loy il sl

FUNCTION VALF

PURPOSE : This function provides intertarget values for use in

in the worth calculation.

ENTRY POINTS: VALF

FORMAL PARAMETERS: X - A ratio of distances
FN - A weighting paramcter

COMMON BLOCKS: None

SUBROUTINES CALLED: None

CALLED BY: FOOTPRNT, EVAL, BOOSTIN

This function mcrely computes values for the following equation:

(1 - X)/(1 + (X * FN)) X<1
VALF =
0 X>1

Figure 114 displays representative curves for this function for three
values of FN.

The formal parameter X (usually called ALPHA in the calling program) is

a ratio of intertarget cquivalent downrange distance to a maximum feasible
equivalent downrange distance, The formal parameter FN is a

weighting parametev. As FN increasecs, the valuc declines more rapidly
with increasing values of X. Incrcasing FN has the effect of increasing
the worth of targets with many close neighbors.

Function VALF is illustrated in figure 115.

603

te e s o

T T T e T

1.0 J
1
VALF

! -
Qiﬁ
X (Distancc Ratio) }
o 1-X '

VALF = yriven

Fig, 114. Value Function Tmplemented in VALF

604

o RTEmTmTE e

START

10
Is Distance Yes
Ratio Greater Se; Value
Than 1.07 o 0.0

} No
i 20

Calculate Value
Using Value
Equation

RETURN

RETURN

1
Fig, 115. PFunction VALF
0645

LMt T

CHAPTER 7
PROGRAM POSTALOC

PURPOSE

The purpose of the post-allocator, program POSTALOC, is to write missile
and bomber delivery plans from the weapon-to-target allocations developed
by the allocator, program ALOC. In the case of missiles, this is a
simple process since the missile flight plans (as required by the Simula-
tor) are completely determined once the target and launch coordinates are
known. In the case of bombers, the process is more complicated. The
development of bomber sorties requires the association of several strikes
in a single sortie. Moreover, it is necessary to associate each sortie
with specific launch and recovery bases and to select a flight profile
which specifies where low-altitude capability should be used. Since the
allocator does not distinguish between bombs and air-to-surface missiles
(ASMs) carried by the same aircraft, it remains for the post-allocator to
determine which targets should be targeted with bombs and which with
air-to-surface missiles.

INPUT FILES

POSTALOC uses two input files: BASFILE and either ALOCGRP or TMPALOC.
BASFILE is written by program PREPALOC., If MIRVs are present, POSTALOC
uses the ALOCGRP file which contains the target allocation from ALOC, as
rearranged and rewritten by programs ALOCOUT and FOOTPRNT. If no MIRVs
are present, POSTALOC uses the TMPALOC file which is output by program
ALOCOUT.

Subroutine GETGROUP reads the following data from the BASFILE:
1. Common /MASTER/, containing basic information al'nut the data
base, such as number of weapon groups, number of penetration
corridors, number of targets, etc. (See table 31 for a

complete description of this and all other common blocks.)

. Common /FILES/, containing the logical unit numbers of all
the files in the Plan Genecrator.

600

e ymi :

L . L R . E PRI SET) O SR PR iL-‘ug“
S N e o i i ul = e = pr—]

3, Common /CORRCHAR/, containing the general characteristics of
each penetration corridor.

4, Common /ASMTABLE/, containing the characteristics of ecach of
the ASM types.

5. Common /PAYLOAD/, defining the payloads of the various bomber
types.

6. Common /DPENREF/, containing the coordinates of the depeuetration
and refuel points.

Subroutine GETGROUP skips subsequent BASFILE data until it reaches the
word of Hollerith Z's which marks the beginning of the weapon group data,
It then reads for each weapon group common /GRPDATA/, containing basic
data about the weapon group and its bases, and common /GRPTYPE/,
containing type characteristics of the bomber or missile.

The reading of ALOCGRP or TMPALOC for missile groups takes place in
subroutine MISASGN. For bomber groups, subroutine PRERAID reads common
/STRKSUM/, which is a summary of the weapon allocation by pcnetration
corridor. PRERAID makes a call on subroutine GENRAID to process each
penetration corridor, and GENRAID reads from the ALOCGRP common /3/, which
contains the data on all the targets assigned through the given penetration
corridor,

OUTPUT FILE

The output file for POSTALOC is the STRKFILE, the format for which is
shown in tables 32 and 33. Subroutine OUTSRT writes one record for
each bomber sortie, describing the sortie plan and characteristics, and
subroutine MISASGN writes the missile event plans,

The file contains one record for each bomber and missile flight plan
generated. In the case of bombers which refuel, two records are present:
the first for the primary, refueled plan and the second for the
alternate plan to be used in the event of a refuel abort.

The end of data on the file is signalled by a dummy bomber record which _
has a group number of 201, f

607

Table 32. STRKFILE Format (Missile Record)
Written From Array EVTDATA

J WORD DESCRIPTION
% Side
% 2 Command and control index
; 3 Group index
: 4 Time of launch
f 5 Payload index
| 6-8 Zero
{ 9 Missile type
% 10 ICLASS=1
' 11 Launch region
12 Alert status
13-16 Zero
{ 17 Number of missiles
i 18 Number of targets
: 19-36 Missile indices
37-.54 Site indices
55-72 Target indices
73-90 Offset latitude
91-108 Offset longitude
109-126 Flight times in hours
127-144 Weapon site latitude
145-162 Weapon site longitude
163-180 Target latitude
181-198 Target longitude a
199-216 Designator code of target
3 217-234 Task code of target
235-252 Country code of target
253-270 Flag code of target é
g
{
608 .

Table 33.

WORD

10

11

12
13-22
23-32
33-42
43-52
53-62
63-72
73-82
83-92
93-102

103-112

STRKFILE Format (Bomber Record)
Written From Common OUTSRT

DESCRIPTION

Sortie index

Group index

Corridor index

Vehicle index

Refuel index

Depenetration index

Payload index

Base index

Weapon type

Base latitude

Base longitude

Number of targets

Type of target

Latitude of target

Longitude of target

Latitude of weapon offset

Longitude of weapon offset

Index of target

Designator code (DESIG) of target

Task code of target

Country code of target

Flag of targcet

60

3oy]

I A LN

WORD
@ 113-122
123-132
133
134
135
136

137

Table 33. (cont.)
(Sheet 2 of 2)

DESCRIPTION

Local attrition

Cumulative survival probability
Low-altitude range (precorridor legs)
Low-altitude range (before first target)
Low-altitude range (after first target)
Speed at low altitude

Speed at high altitude

610

CONCEPT OF OPLRATION

The sortie definitions developed by POSTALOC are generated by weapon
groups, one penetration corridor at a time. They consist of an ordered
list of the targets to be struck by cach sortie, a specification of
which targets to strike with ASMs, and an cstimate of the low-altitude
range allotted for use before, versus after, the first target (and in

any legs preceding the corridor origin). The sortie definition does not

include the actual coordinates for the events, Thus for the bomber
events it remains for PLNTPLAN to add these coordinates, calculate
release points for ASMs, and compute time of centry into defense zones.

Figure 116 shows the relationship among the various major subroutines in
the post-allocator. The arrows in the figure point from cach subroutine
to the subroutines it calls. Thus the arrows illustrate simply the
calling sequercc hierarchy.

The basic driver program POSTALOC, see figure 117, serves only to

definec the order in memory of all common blocks in the program, The
actual processing begins with GETGROUP, which initializes all files,
reads in the basic reference data, and then sets up the reference data
for the first (or next) group to be processed (BASFILE). At this point,
the processing splits, If the group is a missile group, a call is made
on MISASGN which handles all the rest of the processing for the group.
If the group is a bomber group, PRERAID is called. PRERAID then remains
in control throughout the processing of the group.

When MISASGN is called, it reads ALOCGRP or TMPALOC to obtain all the
strikes assigned to the group. These strikes are then assigned to
specific missiles in the group. An effort is made to assign the strikes
so that each basc and cach squadron in the group will have a fair share of
both high and low priority strikes. The resulting assignments are then
formatted as starting events for the Simulator, and appropriate launch
times are assigned.

When PRERAID is called, the process is considerably more complex. Like
MISASGN, PRERAID rcads in the strikes assigned to the group. lowever, it
recads them one corridor at a time; and after the strikes for a corridor
have been read in, it calls GENRAID to process the raid in that corridor
before proceeding to the next,

Thus at the level of GENRAID, the processing deals with a single raid
consisting of aircraft from onc group by way of not more than one corridor.
It is useful to think of the remaining subroutines as being divided into
two major scts:

611

EUFEAE TS I SN H]

PRSP

1f Borber Group

-

PR
For Specificd Uinp, Petenanes
Numbee OF Aelincles 1o Silocate
For Ratds [n Lh \sapned
Feaetration Corfidur vl

Specifies Onder B Aveigunent

REKATD

Ry Milases In Group

Y

NIWURR

Earablish'Tursy Corrtdor

Cuts For Tactieal
And Naval Homhers

hf

GLARALD

for Spect fled Hatl, Decernines
lhe Order O¢ Assignaent ur
Taryets And Controts lhe

Generation OF sorties

POSTALOC

[orkver Fiviian)

Y

GETGACHP

Sets W And Sequentially
Procestes Fael heapon Groap

If Micgila dioap

Y| SASGY
Corpletely Tioveises
Hisside troups *
Writes YMigajle (venty

arrorr
Daes Initiairzation

Cunt

For Mptimbzanton Of

All Sorties In Ritd

[igg]
18 Praves

Sarties In kald

¥ Stquence
For Optiafiition ¢f Al

Caleulalds Curvilinear
Coordinates RO And #1!! which
Determine Ordes Of Target
Asslgnment In Rasd

in Specifled Raty

Selewts Targets tither To left
Or To Right Uf Corridor To
Be Assiygned To Cach Fligne

y

SEXTEL

Deternines Nurber Of
Afrcraf® Ou Next Sase To
Asalgn As Xext Filght Unit

I

Makes Initiat Assigament

OF Targets For fach surtie
[n tpecitied Flight

bor Sorties Calling For Refueling

Sl FI\RUR_"_
o | Modi £1es it TV Generate

1
For Each Sortie

Y

GETSORT

Scts Up Data +oT Specified
Sortles~Sclects Retevant

Onitied Targets
tor Cowparison

Alternate Sortie Plan In
Casc Uf Refuntling Abert

)

)

Qi
Clesrs Target Fron

Optimiration Arrays

T

P! or Specified Sortie lontrols

Optinmtzation Process

o

AU
es bafa For
at Tied Target
{nro umit File 0f
Optimization
Arrays

—

VAL

Fstimates Wirgunal
Yalue Of ALl Bushs in
Sottie And Poteutial

Yalue OFf

Convereivn Ty ASM

Core
Y vadue
Gutted ve
WModarg

ryinal
2f

thus

oty

Pvaim
Est.aaies Hraanag
Yalue uUr Barbs
On mitted Targets

aate,
es \llocitien
vt fow-Altitade wange
\nd [valuates Payoff

Targets 19 And From
2mit List [ato
Bonb Or AN\ Lists

Fi

¥ ¥

Stores 13.0rve Of
Specified Surtie fur
Future Pofr rerer

OUTSHT

Witputs Final Form

sortie

g. 1lo,

612

POSTALOC Calling Sequence

TALTETTTS

T T TTaET

START

Call SIORAGE : !

!; ' To Calculate

' : Amount O Core
Ised

Y

' Call TIMEME
(1) To Initiulize
: Timing Routine

Y

‘ ’ T10TA=1

+ i
L |
, Enter POSTALT
To Ist Position
Of 1CAMFROM
\ Arrayl

| !
Call SETFLAG
To Read Print
Request Cards
]

| | Y \
| TCALL=122
!

PRNTE ARAYSTZE
To Issue Print 122

!

\7 NTAPE= 3 (s) _
' Y X :

Call GETGROuP Gibtract | Write

Too Read Weapen B }" v t——-/ Corpletion
. Dot rom TGlA "
iroup [hita lessaye

Fip, 1170 Prowran POSTALOC

ols

1. GENRAID .and all the subroutines it calls directly or indircctly,
with the. exception of
|

2. OPTRATID and all the subroutines 1t calls dircctly or indirecectly.
\
The first sét of subroutines deals with the raid as a whole and is
concerned with a rough division of the strikes in the raid among the
availahle vehicles and bases. !
\

Subrputines in the sccond set are concerned with one sortic at a time.
They'deal with cach sortic in considerable detail, taking into account
range, estimated attrition rates, low-altlitude capability, and the option
for usc of ASMs or bombs on specific targets. During this process,
provision is made to omit strikes that-scem unprofitable. Iiuch strike
onmitted may be picked up in processing later sorties, so that some refine-
ment of the initial wrough division of the strikes usually takes place in
this phase. X

From a design point of view, this division of POSTALOC was dictated by
computer memory considcrations. The computer memory is cntircly

adequate to deal with a completc representation of any single sortic, but
would be totally inadequate to decal with such a representation of all
sorties at once. Thus where onc must deal with an cntire raid, the
sorties arc represented in ai very skeletal form. When any specific
sortie is being processed in detail, the skeletal form is expanded and
uscd to fill out a mere detailed répresentation,

Perhaps the most important single consideration in the above approach is
the problem of evaluating distances between targets. ‘The relevant
distances for a sortie are uscd over and over again in the optimization

of the sortic. It wonld be too vimeeconsuming to recompute cach

distance. Conversely, it is clearly impracticul to provide space to store
and retricve all distances between all targets. In the QUTCK system,
space is provided to storc all distances between all targets (and other
route points) considercd to be relevant to a single sortie. lBach distance
is computed by the function DIFF only once (the first time it is used).
Thereafter it is simply retricved from storage. llowever, such intertarget
distances arc rctainced only for the currently relevant scet of route
points,

The following discussion of POSTALOC is divided into the sections:
1. Raid generation

2. Sctup for sorvtie optimization

3. Optimizution of sortices

S

i'.
)

i

4, Development of missile plans

5. Program conventions for indexing and bookkeeping.

Raid Generation in POSTALQOC

g The ultimate control of processing by POSTALOC always resides with
; subroutine GETGROUP (sec the calling sequence hicrarchy, figure 116).
llowever, this subroutine actually does nothing but control the sequencing

" from onc weapon group to the next,

;

) The significant processing of bomber sorties is done at the level of the

¢ raid, rather than at that of the group.* A seccondary scquencing subroutine
1

PRERATID has been supplied to scquence the processing between separate
raids for the samc group of hombers. PRERAID uses the strike summary

" informution, supplied by ALOCOUT, to determine what share of the group's
vehicles and warhcads should be allocated to cach raid. PRERAID also
sorts the launch bases for the group on the computed distance from each
basc to the entry point of the corridor being processed. Thus, in the
casc of a rctaliatory strike when launches are simultancous, the vechicles
available for the raid are processed in ocder of their time of arrival at
the corridor.

In the case of tactical bombere or naval bombers (i.c., bombers assigned
the attribute-value pair PKNAV > 0.0), a penetration corridor is not used.
1 To preserve the logic of the program, a dummy corridor index is defined

% to indicate no corridor usage. This corridor index is tested hefore
doing distance calculations, strike assignments, ctc., so that the
appropriate substitutions arc made in the method of processing. In this
case, time of arrival is no longer of obvious relevance to the order of
processing. The launch bascs for this case are sorted in the same way as
the targets, as described below.

E Program ALOC is set to assign a few coxtra strikes to cach group of bombers
' in excess of the number of warheads available. The surplus assignment
wrovides flexibility for sortie generation and assures the availability

of targets for the last bomber in a raid, even when the strikes assigned
to the corridor do not come¢ out to an integral number of bouwbers, To a
first approximation, the number of warhcads assigned to cach penctration
corridor by PRERAID is proportional to the number of strikes assigned

*Actually, program ALOC tends to concentrate the weapons from cach group
in 1 small number of raids in the most efficient corridors for the group,
hut POSTALOC must be prepaved to deal with cases in which a number of
raids in different corridors arc gencrated by the same group.

(by ALOC) in cach corridor. However, if this number of warhcads does not
correspond to an integral number of delivery vehicles, the necessary
additional warheads required to produce an integral number of delivery .
vchicles are assigned to cach corridor as it is processed. Since the
corridors arc delivered for processing in order of decreasing numbher of
strikes assigned, this rule puts a slightly higher ratio of bombers to
tarpets in corridors with large raids. In this way, bombers assigned to
corridors where there arve {foew other bombers will have more flexibility to
select from the peographically sparse target set assigned. In the extroeme
case where a corridor happens to have only one or two isolated strikes
assipned, the corridor will! probably be skipped in the assignment of
bombers from the proup, so that isolated individual bombers are less
likely to be assigned to such a corridor.

The next necessuary tusk is to assign strikes within the raid 1o individual
sortices. This requires the assignment of individual weapons to individual
targets in accordance with the location of the tarpets relative to tie
penetration corridor. The assignment is accomplished through the use of
curvi linear cooxdinate systems chosen to parallel typical flight paths
within the penctration corridor.

Figure 118 illustrates two examples of the coordinate system employed in

plinning corrvidor penetrations, The coordinate systew shown is established

with the x=0, v=0 position corresponding to the last route point or origin
of the punetration corridor., The Y axis is parallel to the corridor axis
defined by the origin and the coordinates of the corridor point (or the
head of the corridor arrow).

In the tactical or naval bomber case, the x=0, y=0 position corresponds
to u point which is chosen as follows: centroids arve computed for the
proup of launch hases and for the proup of targets. [Let the distance
between these ceontroids be DISTC, The desired point of origin is the
point on the line running through both centroids, at a distance DISTC
[rom the hane centroid, poing away from the targets. This allows us to
define o coordinate system on which we can locate the bases as well as
the targets,

The + (PHY) coardinates (lines of constant vaiuce of) are roughly
parallel to the type of (light paths penctrating bombers should use,
Thus | a single bomber should be assigned to tarpets that have roughly the
same volue of |,

The two graphs shown correspond to different values of the parameter k,
{known as RORSTYLE in the TFortran) and tllustreate some of the flexibility
provided, A hish value off b is appropriate where saturation of defenses
is desired, while a low value is appropriate i pgreater importance is
attached to wminimizinge the distancee to the targets, For tactical or
naval bombers, for instance, k is set to 1,

0106

e

b =

Fig, 118, Tllustrative Curvilinear Functions

et i ettt it il s

GENRAID rearranges the strikes in order of increasing valuc of PUI. The
rearrangement is accomplished by calling subroutine CORRPARM, which computes
values of PHI and MO for each target, and then calling ORDER and REORDER,
which sort the strikes, together with their associated target data, on

the value of PHI.

After the reordering is complete, the assignment of strikes is simple,

L Subroutine FLTROUTE calls subroutine NEXTFLT to determine the number of

; vehicles to be assigned to the next flight dnd calls subroutine TGTASGN to
X make the initial assignment of targets to vchicles in that flight. When

a penetration corridor is used, FLTROUTE processes launch bases (previously
sorted by PRERAIDR) in order of their distance from the corridor's cntry
point, so toat the vehicles are processed in order of their time of
arrival,

To provide an approximation of saturation and roll back tactics, cach

N flight is assigned as a unit either to one side of the corridor or the

: other, The first flights are usually assigned to shallow targets (for
which the absolute valuc of ¢ is high) while later flights arc assigned

to deeper targets (for which the absolute value of ¢ is low). Even if

the density of strikes on the two sides of the corridor is quite different,
the flights going to opposite sides are kept roughly in balance by compar-
ing the value of ¢ before deciding to which side to assign the next

flight., 1In order to maintain this balance, it is desirable to have at

3 least five or six flights. ‘Thus if there arc four or fewer bases, two
; flights are sent from ecach base,

E If there is no penetration corridor defined, the launch bascs are processed
; in order of their absolute values of ¢ alternating from onc side of the

' coordinate system to the other, in an attempt to make the sortiec paths
approximate as closcly as possible the direction of the PHT lines.

Within cach flight, strikes arc assigned to one sortic at a time working
through the list of unassigned strikes. Before any strike is assigned,
however, it is checked against all strikes previously assigned to the
sortie to be surc it would not duplicate a preoviously assigned target |
(where multiple strikes may be allocated to the same target). If such
duplication would occur, the strike is skipped, and later strikes on the
! list arc processed to get the specified quota for the sortie. Processing
for the ncext sortie in the flight always begins with the first unnssigned .
strike and continues from there. Strikes actually assigned to cach sortie '

. . . . » . s . ¥
are always arranged in the sortic in order of increasing RHO. This pives 1
the initial time order or scquence of the strikes which is used as a '
starting point for the optimization of the sortie.]
The principal subroutines uscd for raid peneration are: PRERAID, GENRAID,]

CORRPARM, FLTROUTE, NEXTELT, TGTASGN, und NOCORR.

618

SR uarie ~xo Lttt

e mame e

Sctup for Sortie Optimization

Before describing the optimization of individual sorties, it is necessary
to describe briefly the way the information is structured during the
optimization,

During the optimization of a sortic, all targets rclevant to the sortic
are entercd into a detailed computation array. This array (common
/SORTYTGT/ -~ tarpets for this sortic) includes not only the targets or
strikes originally assigned to the sortie but also any targets omitted by
prior sorties that may be relevant as target alternatives. The SORTYTGT
arrays include not only the index to the targets in the basic target
list, but also the coordinates, value, ana defense characteristics for
the targets together with temporary scratch-pad data, usecd in estimating
the valuce of the sortie. Common /SORTYTGT/ has a capacity for 25
separate target entries.

The index positicns in the SORTYTGT array that do not contain targets are
said to be "available' and arc listed in a file named "IAVAIL." The
remaining positions in the SORTYTGT array will contain points of the
present sortie listed in a file named "IHIT" and possible alternative
targets listed in a file named "IOMIT.'" Actually, positions 1, 2, and 3
of the SORTYTGT array arc reserved for nontarget points in the sortie.
Position 1 (IORIG = 1} is used to represent the origin of the penctration
corridor. Positlon 2 (TRECOVER = 2) is used to represent the recovery

point., Position 3 (IDITCH = 3) is used to represent termination of the
mission.

These conventions make it possible to define a sort..- with a simple list
of numhers, This sortie definition is contained in cuimmon block
/CURSORTY/ (current sortie). The following table illustrates such a
sortic definition.

1 2 3 4 5 G 7 8
LY 1 7 7 S 5 5 2 3
THIT 1 7 -0 8 -5 -4 2 3
TOMIT 6 13
IAVATL 10 11 12 15 14

Illustrating Definitvion of Sortie (Common JCURSORTY/)

619

By convention, o negative number in the IHNIT list indicates ap ASM, and a
positive number indicates a bomb., Thus the IFLY, IHIT table 1iiustrated
represents the following operations:

1. Leave origin of corridox

2, Bomb target listed in position 7

3. From the vicinity of 7 launch an ASM at 9

4. Bomb target listed in position 8

5. Fly near § to hit 5 with ASM

6. Strike 4 with ASM launched from vicinity of 5

7. Recover

8., Lnd of mission,
The omit list indicates possible alternative targets listed in positions
6 and 13, while the avail list indicates five empty cells that could be
used if nceded.
Using this structure, the sortie can be modified at will simply by chang-
ing the sortie definition., Changes in the sortie -- flor cxample,
replacement of target 8 with ¢ in the sortie definition -- would not
require any rearrangement of thesc targets in the SORTYTGT array.
Morcover, any distances between targets alrecady computed for targets in
the SORTYTGT array are still valid and do not even have to be re-indexed,
When the sortic is first sct up by TGTASGN, all elements in the IHIT list
are positive. Later decisions during optimization are necessary before
some targets arc flagged with the minus sign to he struck with ASMs,
The principal subroutine used when setting up for sortie optimization is

OPTRAID,

Sortic Optimization

Sorties are optimized by a heuristic programming technique. For cach
sortic a valuc VALSORTY is culculated; the definition of VALSORTY is
given in the description of subroutine FLTPLAN, All decisions on the
modificutions of the sortic definition are based on the cstimated effect
the changes will produce in the value of VALSCRIY.

620

Rt |

The basic controlling subroutine for the optimization is subroutine
SORTOPT, On the first call of SORTOPT for any sortic, the initial sortic
definition may not be feasible., It may rcquirc too many wacheads; it

may require too much range; or it may specify all bombs whereas the
aircraft may carry ASMs. ‘thus the task of SORTOPT is to revise the sortic
definition to produce a feasible sortie with the highest possible expected
value of VALSORTY. To accomplish this, SORTCPT makes usc of:

1. FLTPLAN - A subroutinc which accepts any sortie definition,
selects an optimal or near-optimal flight profile (low versus
high altitude for legs of the mission), and then evaluates the
expected value of the sortie, VALSORTY.

2. CHGPLAN - A subroutine which is called when changes in the sortic
definition are required. CHGPLAN can be called to add or delete
cither a bomb or an ASM from the sortice definition. Speciflically,
it transfers targets between the hit and omit 1ists of the sortic
definition, CURSORTY.

3. The EVAL routines, which estimate the probable change in the
value of a sortic if changes are made in the sortie definition,
The specific routines used are:

+ BVALB, which estimates the contribution of cach bomb to
the value of the sortie,

« LVALOA, which estimates the contribution of cach ASM
nov in the sortic and the potential contribution of cach
omitted target as a potential ASM targcet.

+ BVALOB, which estimates the potential contribution of
cach omitted target as a potential target for a bomb.

The estimated changes in VALSORTY by the LVAL routinces are based on

extrapolation of derivatives and thus are considered only w:. approximations
which must be recomputed by FLTPLAN before they are accepted as final.,

Development of Missile Ilans

Subroutine MISASGN carrices out the assignment of specific strikes to
gpeeific delivery vehicles within a weapon group. Figure 119 illustrates
the structure of a typical group that MISASGN is designed to handle., The
group may include scveral squadrons (two shown) and a squadran may include
several sites (four per squadron shown). Huach site may have one or more
vehicles (three shown). Vehicles are considered to occupy the same site
if they arc so close topether that they would have to be targeted as a

02t

R X ST

§ Squadron 5

vehicles
1,5,9

Site 2

Sguadron 7

X
R
Vehicles

3,7,11

Site 4
BO

Vehicles
4,8,12

POt !

® Vehicles in Group
X Vehicles nut in Group

NOPERSQN = Total Vehicles in Squadron.
NBASE = Number of Basce (or Sguadrons) in Group. R
NWESITE = Number of Weapons per Site. 4
ISTART = Lowest Vehicle Index in Group for Each Squadron. '
NWPNS = Total Vehicles in Group.

k|
Fig, 119, Configuriation ¢f Missiles in a Typical Group !

622

i

single element target. For example, the Polaris sauadron of 16
missiles on one submarine is considered to occupy one site, while the
Minuteman squadron of 50 missiles occupies 50 separate sites.

On the other hand, any nonalert missiles in a squadron will constitute

a separate weapon group, Since the vehicle indices within a squadron
may not start from one, the starting vehicle index ISTART for ecach
squadron is supplied as an input to the missile assignment phasc. This
and the other input parameters defining the available weapons for the
program are shown in the figure. The strlkes assigned to the group by
progeam ALOC are placed in order by decreasing values of RVAL, ‘The
strikes are then assigned in this order beginning with the vehicle index
ISTART for the first squadron. The next strike gees to the next squadron
until all squadrons have uvne strike assigned. Then the vehicle index

is incremented, and strikes are again allecated to all squadrons until
all weapons are used.

For efficiency in the Simulator, all the missile launch operations from
a single squudron are packed into one Simulator event -- unless the
capacity of 18 strikes per event would be exceeded. In this case, more
than one cvent 1is required for each squadron.

A description of MIRV processing is given under Subroutine MISASGN,

Program Conventions for Indexing and Bookkeeping

The list of targets and associlated data arc input to POSTALOC from the
ALOCGRP file, which is the output from program FOOTPRNT, or from the
TMPALOC file, which is the non-MIRV output from prcgram ALOCOUL.

When read in, the targets are in a meaningless order for the purpose of
POSTALOC. CORRPARM is called by GENRAIDR to compute the curvilinear

coordinates RHO and PHI for each target {as discussed in the carlier
section on Raid Generation in POSTALOC). The target data in commor /3/

(elsewhere referred to as the RAIDSTRK arrays) are then sorted and
reordercd by ascending value of PHIs. Throughout POSTALOC, it is the
position of the target in these arrays, to be referred to as the RATDSTRK
index, which is used te identify the turpet, rather than TSDEXNO,

It is the function of TGTASGN, after processing has begun for a given
corridor of a given group, to divide up the entire list of targets in the
RAIDSTRK list among the sortics assigned to that corridor. It does this
by assigning the closest targets to the carliest flights, alternating
sides of the corridor, and working back to the farthest targets for the
last flights. This is accomplished by taking targets from both cnds of
the list and working towards the middle. ‘The RATDSTRA indices For the
turgets are placed in a doubly dimensioned array known as the JUGT array

e

i

T S . [AL S _,JL'_-.«._’..,.LL.\;_—‘;.;__,__JA.’J

in common JCURRAIL/. This array permits up to ten targets to be assigned
to cach sortic.

There will occasionally be more targets initially assigned to a
sortic in this array than there are warheads on the vehicle, This

is because the number of weapons allocated is always slightly

larger than it should be, to allow for some flexibility in the sortic
plans produced by POSTALAOC,

The array MYASGN (commen /CURRAID/), with dimensions and indexing corres-
ponding to the RAIDSTRK arrays (common /3/), gives the assignment of

each target, (Becausc of its dimensions, MYASGN is included in the
RATDSTRK debugping print rather than the CURRAID print.) The values

that MYASGN may assume arce as follows:

-1 Tnitial value; not yet looked at by TGTASGN

0 Looked at by TGTASGN; not assigned to sortic

1 Assigned to sortie; not currently in SORTYTGT array
2 Assigned to sortic: currently in SORTYTGT arrays.

When the individual sortie processing begins, GETSORT moves the target
assigned to the sortic inte a "potential target" arrvay, It dees this by
calling INPOTGT for each target it wants brought in. INPOTGT enters the
RAIDSTRK index of the target in the first available cell of MYPOUGT,
which is a list of targets to be considered for this sortie.

Array IAVAIL in common /CURSORTY/ supplics the next available index of
the MYPOTUCT array at any time. This array originally contains all the
indices of MYPOTGT (i.e,, 1 through MAXPT, the maximum number of
potential targets, stored in reversc onder).

NAVAIL, the number of available spaces, is originally sct to MAXPT.
Each time a target enters or leaves the MYPOTCT array, NAVALL is incre-
mented or decremented respectively. Thus, at any time, TAVATL (NAVAIL)
contains the next available cell of MYPOTGT.

After the RAIDSTRRK index has been entered in the MYPOTGT array the
target is identified by position in the MYPOTGT array; this position
will be called the SORTYTGT index,

Fach target in the MYPOTGT list is also in cither the LHIT or the TOMIT
array, hercafter referred to as the hit or omit lists., Afrer entering
a tarpet in the MYPOTGT list, INPOTGT enters its SORTYTGT index in the
omit list. There is a variable NOMIT which contains the number or
targets in the omit List at any time,

[

SO §

R

e

An additional array, LKHTTMT, provides a cross-reference between indices
of the MYPOTGT array and the hit and omit lists. For cach cell of the
MYPOTGT array containing a target (i.c., each ccll not in the IAVAIL
array), the corresponding cell of the LKHITMT array contains the index
of the target in the hit or omit list. If the target is in the hit
list, this number is positive; if in the omit list, it is negative,

The first cell of the hit list always contains 1, representing the origin
of the corridor (as the first route point), The last filled cell always
contains 3, representing the point at which the bomber will land. The
next-to-last cell may or may not contain a 2, depending on whether or

not rccovery is planned. If recovery is not planned, this 2 will have
been moved to the omit list., 1t is only in this event that the last

cell (containing 3) becomes significant, since it indicates landing
without recovering, or ditching. Hercafter, the 3 will be referred to

as the diteh point. Unlike the recovery point, the origin and ditch
points are always in the hit list, never in the omit list,

After INPOTGT has brought the target into the MYPOTGT array and the omit
list, GETSORT calls CHGPLAN to move it into the hit 1ist., CHGPLAN may
be called with any of the following oplions: OB, to move a target from
the omit list to the hit list as a bomb target; OIA, to move a target
from the omit list to the hit list us an ASM target; BTO, to move a bomb
target from the hit list to the omit list; ATO, to move an ASM target
from the hit list to the omit list,

If the target is to be hit with an ASM, its SORIYTGT index in the hit
list will be negative, as opposed to being positive for a bomb. All
targets arc inserted after the origin (1), and before the recovery (2)
or ditch point (3). The targets arce stored in this array in the order
that the vehicle expects to fly,

There is a companion array to the hit list called IFLY. This array

contains the SORTYTGT index of the "fly poiut' at which the weapon is

relceased. Tf the weapon is a bomb, the fly point is the tavget itself.

If the weapon is an ASM, the fly point is the carliest bomb target which

is within range of the ASM tarpet, (This rule 18 sufficient for caleula-

tions and bookkeeping in POSTALOC, PLNTPLAN actually picks the optimal i
launch point for the ASM later.) If there is no bomb target within range,

the bomber will have to 1y within range of the tarpet. In this cvent,

the target itself is used as its {1y point.

There is one other array used in the target bookkeeping. This is the
LOSTTCT (lost target) array. For coch sortic, GLTSORT scavehes the pange -
surrounding the targets assigned, in the MYASGN array, to sce if there

were any targets which were rejected or dropped (ae., if MYASGY = 0 for .
any tarpgets). 1T so, that target is brought into the LOSTTOT array and !

625

e

I

MYASGN is set to 1. ‘Then if spacce remains, as many lost targets as
there is room for are brought into the potential target arrays.

As cach sortic is processed, half of the targets remaining in the omit
list from the last sortic arc dropped by calling OUTPOTGL. The least
valuable targets are sclected and OUTPOTGT removes cach target from the
omit list, puts its SORTYTGT index back into the IAVAIL list, and sets
MYASGN = 0.

COMMON BLOCK DEFINITION

LExternal Common Blocks

‘The common blocks used by program POSTALOC in processing input/output
(1/0) files arce shown in table 34.

Since the input missile record does not use all of common block /3/,
subroutine MISASGN redefines that common block and stores its output
record there (in array EVIDATA). TIn that subroutine, all clements of

this array EVIDATA after the 18th are cquivalenced as shown in table 356,

Internal Common Blocks

In addition to the common blocks associated with 1/0 operations, the
common blocks described in table 36 are used internally by propram
POSTALOC.

Go0

Table 34. Program POSTALOC External Common Blocks
(Sheet 1 of 9)

INPUT DATA FROM BASFILE

BLOCK ** VARIABLE OR ARRAY* DESCRIPTION
/ASMTARLE/ ASM characteristics
IWHDASM(20) Warhead index
RANGEASM(20) Range
;_ RELASM(20) Reliability | for ASMs
5 CEPASM(20) CEp
? SPEEDASM(20) Speed
2 /CORRCHAR/ Corridor characteristics
PCLAT(30) Latitude of corridor point
PCLONG(30) Longitude of corridor point
PCZONE (30) Defense zone in which corridor
origin is located
RPLAT (30) Latitude of corridor origin
RPLONG(30) Longitude of corridor origin
ENTLAT (30) Latitude of corridor entry
3 ENTLONG(30) Longitude of corridor entry
¥ CRLENGTH (30) Distance from corridor entry to
, corridor origin
Z% KORSTYLE (30) Parameter to adjust mode of
3 corridor penetration
f ATTRCORR (30) lligh-altitude attrition per
3 nautical mile unsuppressed
S ATTRSUPP (30) lligh-altitude attrition per
- nautical mile suppressed
] HILOATTR(30) Ratio low- to high-altitude

attrition (less than 1)

*Paventhetical values indicate array dimensions. All other elcements are

cingle word variables,

**Ordered alphabetically, not by position in core,

RUERE L SR 13

Table 34, (cont.)
(Sheet 2 of 9)

| BLOCK VARTABLE OR ARRAY DESCRIPTION
/CORRCHAR/ DEFRANGE (30) Characteristic range of
(cont.) corridor defense (nautical miles)
NPRCRDEF (30) Number of attrition sections
this corridor
DEFDIST{30,3) Distance of each precorridor leg
ATTRPRE (30,3) Attrition in each precorridor leg
NDATA Number of words in common
/ CORRCHAR/
/DPENREF/ Depenetration and refuel points
DPLINK(50) Depenetration point link
DPLAT(50) Depenetration point latitude
DPLONG (50) Depenetration point longitude
REFLAT (20) Refuel point latitude
REFLONG (20) Refuel point longitude
/FILES/ Logical unit number and maximum
length for all Plan Generator
files
TGTFILE(2)* Target data filc
RASFILE(2) Data base information file
MSLTIME (2) Fixed missile timing file
ALOCTAR(Z) Weapon allocation by targets file
TMPALOC(2) Temporary allocation file
ALOCGRP (2) Allocation by group fil2
STRKFIL(2) Strike file

*In two-word arrays, first word is logical unit number; second word is
maximum file length in words.

numbers,

Single variables are logical unit

Table 34.

(cont.)
{Sheet 3 of 9)

BLOCK VARTABLE OR ARRAY

/FILES/ EVENTAPE *
(cont.) PLANTAPE *
/GRPDATA/
1GROUP
NWPNS
NVEHGRP
IREG
ITYPL
IALERT
TREFUEL
YIELD
ISTART
NBASE
IBASE (150)
BLAT (150)
BLONG(150)
IPAYLOAD(150)
VONBASE (150)
/GRPTYPE/
ISIMTYPE
RANGE
CEP
SPEED
ALERTDLY
NALRTDLY
RANGEDEC

*These files are cutput on magnetic tape.

629

DESCRIPTION

Simulator events tape
Detailed plans tape
Characteristics of weapon prouyps
Group number

Number of weapons
Number of vehicles
Region

Weapon type

Alert status

Refuel code

Yield

Starting weapcen index
Number of bases

Base index number
Base latitude

Base longitude
Payload index

Number on base
Characteristics of weapoin types
Hollerith type name
Range

CEP

Speed

Alert delay

Nonalert delay

High/low altitude fuel con:uaptior

ratio

BLOCK

/GRPTYPE/
(cont.)

/MASTER/

Table 34. (cont.)
(Sheet 4 of 9)

VARTABLE OR ARRAY DESCRIPTION
ICLASS Weapon class
NOPERSQN Number per squadron
SPDHI High-altitnde speed
SPDLO Low-altitude speed
SPDASI! Dash spced
RANGREF Refueled range
NMPSITE Number per site
IREP Reprogramming index
TRECMODE Recovery mode
IPENMODE Penetration modc
FUNCTION Function code
Run ID, and quantity of QUICK
entities
IHDATE Date of run initiation
IDENTNO Run identification number
ISIDEM Attacking side
NRTPT Number of route points
NCORRM Number of penetration corridors
NDPEN Number of depenetration corridors
NRECOVER Number of recovery bases
NREF Number of directed refucl areas
NBNDRY Number of boundary points
NREG Number of command and control regions
NTYPE Number of weapon types
NGROUP Number of weapon groups
NTOTBASE Total number of bases
NPAY LLOAD Number of payload types
NASMTYPE Number of ASM types

NWHDTYPE Number of warhead types

BLOCK

/MASTER/
(cont.)

/PAYLOAD/

/PLANTYPL/

Table 34. (cont,)
(Sheet 5 of 9)

VARTABLE QR ARRAY

DESCRIPTION

NTANKBAS
NCOMPLEX
NCLASS

NALERT

NTGTS
NCORTYPE

NCNTRY

NOBOMB1 (40)
IWHD1 (40)
NOBOMB2 (40)
TWHD2 (40)
NASM(40)
TASM(40)
NCM(40)
NDECOYS (40)
NADECOYS (40)
IMIRV (40)

INITSTRK

CORMSL

CORBOMB

631

Number of tanker bases
Number of complex targets

Number of weapon classes
(presently two)

Number of alert conditions
(presentiy two)

Number of targets

Number of penctration corridor
types

Number of distinct country codes
Payload description tables
Number of type 1 bombs
Type 1 warhead index
Number of type 2 bombs
Type 2 warhead index
Number of ASMs

ASM index

Number of countermeasures
Number of terminal decoys
Number of area decoys

MIRV system identification
humber

Type of plan, and coordination
parameters

Indicator for first or second
strike

Coordination time parameter for
missiles

Coordination distance for bombers

(cont.)
(Sheet 6 of 9)

~Table 34.

INPUT DATA FROM ALOCGRP FILE

5 BLOCK VARIABLE OR ARRAY DESCRIPTION
/S'TRKSUM/ KGROUP Group number

, NTSTRK Total number of strikes for this
g group
L NCORR Number of corridors for this
i group (=1)

; NSTRK (30) Number of strikes assigned to
: each corridor
| /FTXALL/ 1JFIX(1100) Logical data for bombers

; IJFIXR(1100) ;22;§§;;:% fixed weapon

i IKFIX(25)

ﬁ /3/* NT Number of strikes in corridor
; JGROUP Group index number

ﬁ JCORR Corridor index number

? INDEXNO(1100) Target index numbers

f TLAT (1100) Target latitudes

& TLONG(1100) Target longitudes

: TIMEPREM(1100) "COMPLEXD' target indicators

: IDEPEN(1100) Depenetration corridor indices
' DISTOUT(1100) Distances from targets to

*As nscd when precessing a bomber recerd

DISTREC(1100)

632

depenetration corridors

Distances from targets to recovery
points

L ATTRLOC(1100) Local target defense potentials

i RVAL(1100) Relative values of targets
DELAT(1100) Target offset latitudes
DELONG(1100)

Target offset longitudes

T et e wiet o i It whitile _MMMAL_L_LPJA

Table 34. (cont.)
ASheet 7 of 9)

DESCRIPTION |

BLOCK VARIABLE OR ARRAY
/3/* DESIG(1100) Target design..or codes
(cont.] CNTRYLOC(1100) Target country location codes
' FLAG(1100) Flag codes for targets ;
1 /3/** NT Total number of targets assigned %
3 to group k
: JGROUP Group number ?
3 JCORR Corridor number (=0) .
é‘ INDEXNG(1100) Index pumbgrs gf targets f
i Input csetaned to booster)]
from TLAT(1100) Target latitude (degrees) §
| ; g;OCGRP TLONG(1100) Target longitude (degrees) 1
n TMPALOC INTOT(1100) Not used g
4 file RVAL(1100) Relative value of strike ﬁ
Ef DLAT(1100) Offset latitude (degrees) ?
g DLONG (1100) Offset longitude (degrees))
1 DESIG(1100) Target designator code
5- TASK(1100) Target task code :
N; CNTRYLOC (1100) Target country location code g
P FLAG(1100) Target flag code ;
E FTIME (18,50) Flight time matrix i
: EVTDATA (270) Missile record as output to f
4 STRKFILS (see discussion of ,
STRKFILE output for redefinition }
of this array) ;
DUM(3230) Unused |

*As used when processing a bomber record
**As used when processing missile records

633

Table 34,

(cont.)
(Sheet 8 of 9)

OUTPUT DATA FOR STRKFILE*

Latitude of weapon offset
Longitude of weapon offset

Designator number of target
Task number of target
Country code of target

BLOCK VARIABLE OR ARRAY DESCRIPTION
/OUTSRT/ IOUTSRT Sortie index
MYGROUP Group index
MYCORR Corridor index
INDVEH Vehicle index
JREF Refuel index
JDPEN Depenetration index
KPAYLOAD Payload index
LNCHBASE Base index
ITYP Weapon type
BASELAT Base latitude
BASELONG Base longitude
NHAP Numbr~+ of targets
HAPTYPE (10) Type of target
OBLAT(10) Latitude of target
OBLONG(10) Longitude of target
DLAT (10)
DLONG(10)
IOBJECT (10) Index of target
DSIG(10)
TSK(10)
CNTRLC(10)
FLG(10) Flag of target
ATTROUT(10) Local attrition
SURVOUT (10)

missiles are handled separately.

634

Cumulative survival probability

*The bomber records only are written from common block /OUTSRT/; the

i S e Tt R T

A A A M i o A i S ™ L o ot Sl

ot
y
N
R
B
g
b
f

BLOCK

/OUTSRT/
(cont.)

Table 34.

VARIABLE OR ARRAY

DSTLOW1

DSTLOW2

DSTLOW3

SPDLOW
SPDHIGH
RANGEX

RANGEREF
DELAY
IRG

ILRT
I1DBOMBER
AVLOW
RNGDC

635

(cont,)
(Sheet 9 of 9)

DESCRIPTION

Low-altitude range
(precorridor legs)

Low-altitude range (before
first target)

Low-altitude range (after
first target)

Speed at low altitude
Speed at high altitude

Range of vchicle without
refueling

Range of vehicle with refueling

Delay before takeoff
Regional index

Alert status

Bomber identification

Available low-altitude range

Range decrement at low altitude

v atierh ae skt it sde L a1 GEL

R

Table 35. Format of Asray EVTDATA in Common Block /3/ as
Used by Sudbroutine MISASGN (the Missile Record
to be Output to STRKFILE)

(Sheet 1 of 2)

WORD OF
EVIDATA DESCRIPTION EQUIVALENCED TO:%
: 1 Side Notte
i 2 Command and control index None
3 Group index None
4 Time of launch None
5 Payload index None
6-8 Zero None
3 9 Missile type None
10 ICLASS=1 None
3 11 Launch region None
? 12 Alert status None
f: 13-16 Zero None
{f 17 Number of missiles None
1 18 Number of targets None
1 19-36 Missile indices KMISL(18)
37-54 Site indices KSITE(18)
55-72 Target indices KTGTIND(18)
73-90 Offset latitude XDLAT (18)
91-108 Offset longitude XDLONG (18)
109-126 Flight times in hours FLTIME (18)
127-144 Weapon site latitude WLAT(18)
145-162 Weapon site longitude WLONG(18)
163-180 Target latitude XTLAT (18)
181-198 Target longitude XTLONG(18)
199-216 Designator code of target KDESIG(18)

*Parenthetical values indicate array dimensions. All other elcments are
single word variables.

636

Table 35. (cont.)

e, {(Sheet 2 of 2)
: WORD OF
; EVTDATA DESCRIPTION EQUIVALINC L1y 'I11:
ﬁ 217-234 Task code of target KTASK(18)
3 235-252 Country code of target KCNTRYLC (1o
) 253-270 Flag code of target KELAG(18)
:
3
i
3
5
g
[
]

A37
e sadiid i VLA ST T TR A SRV TS I St 4 11 >

Table 36.
(Sheet 1 of 13)

Program PQSTALOC Internal Common Blocks

BLOCK VARIABLE OR ARRAY* DESCRIPTION
/ARAYSTZE/ MBASEPG Maximum number of bases (or
squadrons) per group (150)
MC Maximum number of corridors
(30)
MT Maximum numher of targets per
group (1,100)
ML Maximum scparate defended zones
pre-entry (threce)
MSTRK Maximum strikes per sortie
(10)
MSORTY Maximum sorties per group
(100)
MSRT Maximum sorties per group per
corridor (100)
MFLY Maximum number of points in JHIT
and IFLY lists (13)
MAY.PA Maximum number of points
allowed by array size (25)
/ ClLIGPLAN/ (In effect, part of calling
sequence for subroutine CHGPLAN)
Jbo SORTYTGT index for target to be
added or deleted by CHGPLAN
IAIM SORTYTGT index to flight point
for ASM launch
ISCAN Controls number of sortie pnints
scanned by EVAL routines
JAFT SORTYTGT index to target tc
precede insertion
ATO, OTA, BTO, OTB Calling parameters for CHGPLAN
/CONTROL/ EPSILON Set to 1001; wuscd in tests of
significance

*Parenthetical values indicate array dimensions.
single word variables.

All other clements arce

BILOCK

; - /CONTROL/

(cont.)
/CORRIDOR/

/CURRAIL/

Table 30:! {cont.)
(Skeet 2 of 13) \

Set to 1; not currently uscd

\
Latitude Jf corridor oridntation

Longitude of corridor orientation

Defense zone for corridor origin

Latitude of corridor origin
(route point) :

Longitude of corridor origin

Latitude of corrvidor entry point
Lbngitudc ol corridor ¢ntry point

Distance from entry to corridor
Power of Y vs. X in calculation

Attrition of corridor with
unsuppressed defenses at high .

Attrition of corridor at high
altitude with defenses suppressed

Ratio of low- to high-altitude

‘Characteristic range of defense

Number of separate defended zones

Length of Ith defended zone

Attrition in Ith detended zone

Base index assigned to sortic

VARTIABLE OR ARRAY DESCRIPTION
KWALSRT
CLAT
point
TLONG
point
CZONE
PLAT
!
PLONG |
(route peint) .
ELAT
ELONG
CLENGTH
origin
KORPWR
) of PHI
CORATTR
altitude
CORSATTR
AﬁTRHILO
attrition
RNGDEF
operations
NPREDEF
prior to corridor
DISTDEF(3)
PREATTR(3)
MYBASE (100)
NASGN (100)

1
Nuinber of targets assigned to
sertie

Table 36. (cont.)
(Sheet 3 of 13)

: BLOCK VARIABLE OR_ARRAY DESCRIPTION

: JUHRBALD/ I''GT(1STRK, ISRT) Index (IT) to target for ISTRKth
1 ooty with ISTRK = 10 strike in ISRTth sortie in present
i L ISRT = 100 raid; negative for ASMs

g HMYASGN(1100) Assignment status of.target
. AINDEXVEH(100) Vehicle index assigned to sortie

JCUPSORTY 7 SUMHI'T Total targets hit by current
sortie plan

1
;\ NUMBOMB : Number of targets bombed
SHIMASM . Number of targets hit with ASMs J

{ M Number of sortie points -- NUMHIT P

+ (Origin, Recovery, Ditch)]

(LY (13) SORTYTGT index to Ith route
point or target

T(13) © SORTYTGT index to Ith flight
! point -~ not the same as IHIT
| for ASMs
LASTIAY ' Sortie position of last paying
sortie point, pre-ditch
LASTTGT ' Sortie position (=NUMHIT + 1)
2 ' for last target

s LOMIT Number of targets in potential ;

3 target array not currently in

. _ sortie

L INTT(25) | SORTYTGT index of lth omitted

1 : target :

“LAIL Number of spaces in potential 3
target arrays available for new '
targats

FUALL(25) SORTYTGT index of Ith available
space

T T

VOOHTMT(25) Link for target J to sortie hit
' list if positive; omit list if
negative
COOLD Pointer used in finding lost

targets

BLOCK

wE /CURSORTY/
(cont.)

L /DATA/
!

/DEBUG/

/EVAL/

Table 36,

(cont.)
(Shecet 4 of 13)

VARIABLE OR ARRAY

DESCRIPTION

LOSTTGT(25)

NLOSTTGT
NWHDS

NASMS

RNGASM
DSTB

IPRINTNO (60)
IFSTSORT (60)
LSTSORT (60)
LPASS (60)

LCORR (60)
LGROUP (60)

IOTA

ICAMFROM(20)

MINB
JDELB
MAXDA

JADD

641

SORTYTGT index to Ith lost
target

Number of lost targets

Number of warheads carried on
this sortie

Number of ASMs among warheads on
this sortie

Range of ASMs this sortie

DISTB(IB) - distance from target
to entry point

Print request number
First sortie to activate print
Last sortie to activate print

Pass on which print is active
(1 or 2)

Penetration corridor on which
print is active

Weapon group on which print is
active

Index to cell containing Hollerith
name of subroutine currently in
control

Array containing Hollerith
subroutine names in order of
calling hierarchy

The lowest payoff for a bomb in
the sortie, found by EVALB

The SORTYTGT index of the bomb
with lowest payoff, MINB

The maximum payoff increment by
using ASM on omitted targets

The SORTYTGT index of the target
with maximum increment MAXDA

IR T T T T T TR TR o

.
£

BLOCK

/EVAL/
(cont.)

/FTXRANGE/

/FLAG/

Table 36. (cont.)
(Sheet 5 of 13)

VARTABLE OR ARRAY
MINDA

JDEL

MAXOB
JADDB
MAXDAB

JADDA

VALSORTY
JAF
KALC

VALDIST

VALMAX
JSEQERR

ISFINPLIN
CENTLAT, CENTLONG

DISTC

IFLAG(200)

642

DESCRIPTION

The minimum payoff for an ASM in
the sortic

The SORTYTGT index of the target
for ASM with minimum payoff,
MINDA

The maximum payoff increment for
a bomb on an omitted target

The SORTYTGT index of the target
showing maximum payoff, MAXOB

Maximum payoff increment obtainable
by usce of ASM instead of bomb

The SORTYTGT index of bomb target
showing maximum payoff increment,
MAXDAB

Estimated total sortie value
(=VALDONE (LASTPAY))

Index of target to precede
insertion

Signal to EVAL routines to skip
repetition of calculations

"Value" per unit distance of
extra range as calculated by
FLTPLAN

Maximum possible valuc of sortie
as currently defined

Index of target in sortic showing
largest sequence crror

Not used

Latitude and longitude of centroid
of launch bases in group

Distance between centroid of
launch bases in group and corridor
entry point

Set to 1 if Ith print is active;
0 if not

o

BLOCK

/FLTPASS/

/IDUMP/

/INITOPT/

/INDEX/

462540 O 92

Table 36.

VARTABLE OR ARRAY

(cont.)
(Sheet © of 13)

DESCRIPTION

IFPASS

JVEHLO
JVEHH]
NVE'[PASS

NPASS
IDMPG
IDMPC
10MpPS
IDMPP

IPLAN
FLYLOW(3)
IMPORTD (3)
ATPDIST(3)
DISTINK
TDEFDIST
RNGE
ISORTY
IORIG

TRECOVER

043

Index of sortie processing pass
(limited to 100 sorties per pass)

Low-vchicle number, this pass
High-vehicle number, this pass

Number of sorties this pass
(equals 100, or all remaining
sorties)

Total number of passes necessary
Group on which to ABORT

Corridor on which to ABORT
Sortic on which to ABORT

Abort on primary (1) or alternate
(2) plan

Indicates whether primary or
dalternate in process

Low-altitude distance flown in
Ith precorridor leg

Order of importance of attrition
per mile in Ith precorridor leg

Average attirition per distance
in Ith lep

Distance from refuel point or
entry point to corridor origin
Total precorridor defended
distance

Range of vehicles in this group
(=RANGE or RANGREF)

Index to sortic currently
being processed

SORTYTGT index for corridor
origin (=1)

SORTYTGT index for rccovery
point (=2)

i St

Table 36. (cont.)
(Sheet 7 of 13)

BLOCK VARIABLE OR ARRAY DESCRIPTION
/INDEX/ IDITCH SORTYTGT index for ditch point
(cont.) (=3)
IT Target index
ICORR Corridor index
JTGTIN SORTYTGT index of the latest
target brought in by INPOTGT
/INPUTFL/ INPTFL Logical unit number for TMPALOC
or ALOCGRP file
MYIDINFL ID for TMPALOC or ALOCGRP file
/ IRESRCH/ TRESRCH Flag for subroutine TGTASGN
/ ISKIPTO/ ISKIPTO Group number with which POSTALOC
processing is to begin
/KEYS/ KEYSTART Keyword for retrieving ISTART
KEYVBASE Keyword for retrieving number
of vehicles/base
/MISPRNT/ LK Squadron number for current
] event
: LL Current event number
NEVTS Number of events to be generated
/NEXTFLT/ NTAILS Number of vehicles assigned to
next flight
JB Index of launch base of next
flight
SPLIT Equals 1 if less than 4 bases in

group; otherwise =0 (if 1,
causes each base to "split'';
i.e., send flights down both
sides of corridor)

KB Marker for side 2
LB Marker for side 1

/PCALL/ IPASS OPTRAID pass in process (1 or 2)
ICALL Print request number

Table 36, (cont.)
(Sheet 8 of 13)

R T e—

b BLOCK VARIABLE OR ARRAY DESCRIPTION
{ “ /POLITE/ Parameters for interpolation
| routines
; S1 Latitude of first point
: T Longitude of first point
; §2 Latitude of second point
|
j T2 Longitude of second point
) FACTOR Fraction of distances to be
interpolated

SR Result: latitude of interpolated
; point
i TR Result: longitude of interpolated
? point
: /PRNTE/ ATLEGHI Not used , 3
ﬁ ATLEG Attrition on leg : fi
I P
i RNGSURP Range surplus when whole flight
i is high altitude
b DISTANCE Total length of current flight
g route
E RSVLOW Amount of incremental range

reserved for low altitude prior k
to the first target

AVAILOW Total amount of incremental low-
altitude range (i.e., surplus
high-altitude range converted to

. the number of miles of potential

§ low altitude)

} VALIT Value of sortie remaining, after
first target has been reached

FSTATTR Attrition rate at point where
sortie goes low on leg to first
target, or highest rate if sortie
does not go low

3 VALTOTT Total value of sortie

1
i
1
1
i
i

1
1
i
i
1
el
'
i
R PR TN SR S VRTIRY | SRS RV & L.J

A e b i R R i 0 D 4 s Lkt etk e A s PR S

BLOCK

/PRNTE/
(cont.)

%

v
b
3
i
3
B
r

Table 36.

VARIABLE OR ARRAY
PRATRATE

VALONT

CURVAL

CRITATT

ADDLOW

JHONE

DISTSV

ATAREA

ATLOCAL

VALO

JX2

DISTAD

ADDTEST

646

(cont.)
(Sheet 9 of 13)

DESCRIPTION

Attrition rate in current pre-
corridor leg

Value of sortie from currcnt leg
(after first target) to rccovery

Highest product of value-on and
attrition of areas competing for
low altitude; used in computing
value per unit distance of low-
altitude range

Higher of the two products of
value-on and attrition for pre-
corridor legs and legs after

first target; used in determining
the amount of low-aititude range
(ADDLOW) to be put in the first-
target leg

Amount of low-altitude range
currently being allocated

SORTYTGT index of first target in
sortie

Distance saved by omitting a
target JH

Difference in area attrition if
a target JH is omitted

Local attrition of target JH

Value of omitting target JH, duc
to decreased attrition and range
saved

Index used in EVALOB for deter-
mining position of insertion for
new target

Distance added by inserting
target JX in normal position

Distance added by inserting
target JX in alternative position

i

LTI R T e

BLOCK

/PRNTE/
(cont.)

/PRINTOPT/

Table 36.

VARTABLE OR ARRAY

(cont.)
(Sheet 10 of 13)

ATTRNEW

ATNEWLG

DVALO

JX1

DIST1
DIST2

iSRTYTGT
ICURSRTY
ICURRAID
IRSTKCPM
IEVAL
TRAIDSHR
ICHGPLAN
TINITOPT
IINDEX
ITGTASGN
IGRPTYPE
IGRPDATA
ICORCAR
ISTRKSUM
ICORRSHR
ICORIDOR

647

DESCRIPTION

Attrition added by inserting
target JX in sortie

Estimated attrition on leg to new
target JX being inserted

Differential value of leaving new
target in the omit list rather
than inserting it

Index used in EVALOB for deter-
mining position of insertion for
new target

Length of leg preceding target JH

Length of leg from target JH to
next target

(Options used as calling para-
meters for subroutine PRINTIT
to produce the indicated prints)

Common /SORTYTGT/
Common /CURSORTY/
Common /CURRAID/

Commons /RAIDSTRK/ and /2/(CORPARM)

Common /EVAL/
Common /RAIDSHR/
Common /CHGPLAN/
Common /INITOPT/
Common /INDEX/
Common /TGTASGN/
Common /GRPTYPL/
Common /GRPDATA/
Common /CORRCHAR/
Common /STRKSUM/
Common /RAIDSHR/
Common /CORRIDOR/

g
g
Table 36, (cont.)
(Sheet 11 of 13)

BLOCK VARTABLE OR ARRAY DESCRIPTION

/PRINTOPT/ INEXTFLT Common /NEXTFLT/

(cont.) IDEBUG Common /DLBUG/

JREFUEL Common /REFUEL/
JOUTSRT Common /OUTSRT/
JPAYLOAD Common /PAYLOAD/

/RAIDSHR/ NVEH Number of vehicles from current
weapon group assigned to raid
in this corridor

NRVEH (200) Number of vehicles in group on
Ith base which are still
unassigned

DISTB(200) Relative flight distance from
Ith base te corridor entry

NB Number of bases in group

VPRBASE Average number of vehicles per
base

NWPV(200) Number of warheads per vehicle
on Ith base

NWPC Total number of warheads to enter
by this corridor

TGTSPWHD Targets per warhead (=NT/NWPC)

NASMPV(200) Number of ASMs per vehicle on
Ith base

/RUNCHECK/ RUNCHECK VALSORTY accumulator

/SKIp/ ¥OLD Contains Hollerith IDENT of last
call on PRNTE

ISKIP Set to 1 to avoid printing
hecader between each line of the
same print

/SORTYTGT/ MAXPT Maximum number of points permitted
in potential target array

MYPOTGT(25) RAIDSTRK index of target J

648

ERESL =t 3t T s s ngdy

Table 36. (cont.)
(Sheet 12 of 13)

., BLQCK VARIABLE OR ARRAY DESCRIPTION
/SORTYTGT/ D(J1, J2) Flight distance from target
(cont.) where J1l = J2 = 25 (J1) to (J2)
X VALB(25) Assumed value of bomb on target
: J ~- equals RVAL(J)
1 VALA(25) Assumed value (for defended
- targets) of ASM versus bomb
V(25) Value of target as hit in sortie 4
RHOJ (25) Value of RHO(MHPOTGT(J)), for .
target J
g ATLOCHI (25) Assumed value of local attrition
; to target (ATTRLOC(MYPOTGT(J)))
S DISTLEG(25) Distance of flight leg to target
- from preceding flight point
4 DISTLOW(25) Part of above distance flown at
4 low altitude
5(25) Estimated bomber survival probabi- v 8
_ lity on preceding leg
3 SURV (25) ' Estimated total survival 3
F- probability to target g
VALDONE (25) Estimated sortie value to and
including target J
VALON(25) Estimated sortie value target J
and beyond if SURV(J) were 1.0
DVALB(25) Estimated sortie value added by
3 bomb rlanned on target J
! DVALA(25) Estimated sortie value added by
2 planned ASM on target J
? DREC(25) Distance from depenetration to
: recovery for target J as last
4 target
/TGTASGN/ TGTSASGN Cumulative targets now assigned
to raid
TGTLIM " Value of TGTSASGN not to be

exceeded for sortie

BLOCK

/ TGTASGN/
(cont.)

/VAL/

/1/

/2/

/41

Table 36. (cont,)
(Sheet 13 of 13)

VARIABLE OR ARRAY
NTGT

TFSTGT
ILASTGT
IFSTVEH
LSTVEH
ISIDE
VALRECVR
MUSTREC

VUNLOAD

X(1100), Y(1100)

PHI(1100), RHO(1100)

ISEQ(1100)

650

DESCRIPTIGON

Number of targets allocated to
raid -- equals NT

First target in list to be
processed on this call

Last target in list to be
processed on this call

Index of first sortie to be
processed on this call

Index of last sortie to be
processed on this call

The corridor side to be flown
down

Ratio of recovery value to total
sortie value

Parameter card input; if >0 all
aircraft must recover

Significance parameter for final
alterations in sortie if other
than default (.005)

Temporary storage for values used
in computing RHO and PHI; reused
in subroutine GETGROUP for local
variables

(Formerly common /CORPARM/)

Value of curvilinear coordinates
PHI and RHO for Ith target

Temporary storage used by
utility subroutine ORDER

_—

IR S

Al e N

SUBROUTINE CENTROID

. PURPOSE : Computes the centroid of a given array of
latitudes and longitudes.
I3 "&
; ENTRY POINTS: CENTROID
i FORMAL PARAMETERS: NP, XLAT, XLONG, CXLAT, CXLONG
: COMMON BLOCKS : None
: SUBROUTINES CALLED: None
CALLED BY: NOCORR, GENRAID \
e i ———— B
{5 Method
i " This subroutine sums the NP latitudes which are in array XLAT, and .
?~ the longitudes in array XLONG, then divides both by NP to get the)
N average latitude CXLAT and the average longitudc CXLONG.

If the points being summed fall on both sides of the 360° longitude,
360° is added to all the longitudes less than 180° before summing, and
subtracted out afterwards. If CXLONG is greater than 360°, the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>